Devu and Flowers lucas定理+容斥原理】的更多相关文章

Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th box contains fi flowers. All flowers in a single box are of the same color (hence they are indistinguishable). Also, no two boxes have flowers of the same color.…
传送门 这是一道让我重新认识lucaslucaslucas的题. 考虑到lucaslucaslucas定理: (nm)≡(n%pm%p)∗(npmp)\binom n m \equiv \binom {n\%p} {m\%p}*\binom{\frac n p}{\frac m p}(mn​)≡(m%pn%p​)∗(pm​pn​​) (mod(mod(mod p)p)p) 所以可以看成(nm)\binom n m(mn​)在p进制下的表示 于是这道题就可以用这个方法转换成求C(i,j)C(i,j…
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds memory limit per test 256 megabytes input standard input output standard output Devu wants to decorate his garden with flowers. He has purchased n boxes…
题目链接 给n个盒子, 每个盒子里面有f[i]个小球, 然后一共可以取sum个小球.问有多少种取法, 同一个盒子里的小球相同, 不同盒子的不同. 首先我们知道, n个盒子放sum个小球的方式一共有C(sum+n-1, n-1)种, 但是这个题, 因为每个盒子里的小球有上限, 所有用刚才那种方法不行. 但是我们可以枚举. n只有20, 一共(1<<20)-1种状态, 每种状态, 1代表取这个盒子里的小球超过了上限, 0代表没有. 一共取sum个, 如果一个盒子里面的小球超过了上限, 那么就还剩下…
题目链接:Codeforces 451E Devu and Flowers 题目大意:有n个花坛.要选s支花,每一个花坛有f[i]支花.同一个花坛的花颜色同样,不同花坛的花颜色不同,问说能够有多少种组合. 解题思路:2n的状态,枚举说那些花坛的花取超过了,剩下的用C(n−1sum+n−1)隔板法计算个数.注意奇数的位置要用减的.偶数的位置用加的.容斥原理. #include <cstdio> #include <cstring> #include <cmath> #in…
这题又是容斥原理,最近各种做容斥原理啊.当然,好像题解给的不是容斥原理的方法,而是用到Lucas定理好像.这里只讲容斥的做法. 题意:从n个容器中总共取s朵花出来,问有多少种情况.其中告诉你每个盒子中有多少朵花. 分析:其实就是求方程: x1+x2+...+xn = s 的整数解的个数,方程满足: 0<=x1<=a[1], 0<=x2<=a[2]... 设:A1 = {x1 >= a[1]+1} , A2 = {x2 >= a[2]+1} , .... , An = {…
题意:给定方程x1+x2+....xn=m,每个x是正整数.但是对前n1个数做了限制x1<=a1,x2<=a2...xn1<=an1,同时对第n1+1到n1+n2个数也做了限制xn1+1>=an1+1....xn1+n2>=an1+n2,输出方程解个数. 解法:首先如果对数字没有任何要求(应该是只要求是非负数)的话,答案就是C(n+m+1,m+1)原理是隔板法.但是此题有各种限制,我们想办法解决限制使得答案往无限制上面靠. 首先是解决要正整数,那么每个数字减一即可,就是m-=…
题目描述 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不能通过这些路口.小C喜欢走最短的路径到达目的地,因此他每天上学时都只会向东或北行走:而小C又喜欢走不同的路径,因此他问你按照他走最短路径的规则,他可以选择的不同的上学路线有多少条.由于答案可能很大,所以小C只需要让你求出路径数mod P的值. 输入 第一行,四个整数N.M.T.P. 接下来的T行,每行两个整数,表示施工的路口的坐标. 输出 一…
传送门 解题思路: 假如只有 s 束花束并且不考虑 f ,那么根据隔板法的可重复的情况时,这里的答案就是 假如说只有一个 f 受到限制,其不合法时一定是取了超过 f 的花束 那么根据组合数,我们仍然可以算出其不合法的解共有: 最后,由于根据容斥,减两遍的东西要加回来,那么含有偶数个 f 的项为正,奇数个时为负. 答案就是: 搜索答案,使用Lucas定理,计算组合数上下约去. 代码: #include<cstdio> #include<cstring> #include<alg…
Lucas定理这里有详细的证明. 其实就是针对n, m很大时,要求组合数C(n, m) % p, 一般来说如果p <= 10^5,那么就能很方便的将n,m转化为10^5以下这样就可以按照乘法逆元的方法求解. 定义: C(n, m) = C(n%p, m%p)*C(n/p, m/p) (mod p) 一种比较好理解的证明方式是这样的, 上面资料中有提到, 由p为质数,(1+x)^p = 1+x^p (mod p) p为质数,然后就是下面这幅图的内容了. 将n, m分别表示成p进制,n = n/p*…