Sparql语言模型(一)】的更多相关文章

在进行RDF数据查询或描写叙述的时候.Sparql不管从出身.标准抑或操作习惯上都是一个不错的选择.然而对于一个刚開始学习的人来说多多少少有些"禁忌"的意味,操作起来也有点畏首畏尾.所以正好利用这段时间进行语言的总结与学习,顺道对语言特性进行一一破解. 简单查询 1.总决式(基本要诀) select  ?o  where {       s p ?o } 破法:类SQL讲究选择映射,同一时候sparql本身基于rdf中的三元组(s p o)--主谓宾.全部查询就变成了主谓宾的描写叙述,…
一.背景 近期研究了一下语言模型,同事推荐了一个比较好用的工具包kenlm,记录下使用过程. 二.使用kenlm训练 n-gram 1.工具介绍:http://kheafield.com/code/kenlm/ 2.工具包的下载地址:http://kheafield.com/code/kenlm.tar.gz 3.解压后运行,./bjam 进行编译 4.使用如下命令进行训练:bin/lmplz -o 5 --verbose_header --text data/chat_log.txt --ar…
主要两个方面 Probabilistic modeling 概率建模,神经网络模型尝试去预测一个概率分布 Cross-entropy作为误差函数使得我们可以对于观测到的数据 给予较高的概率值 同时可以解决saturation的问题 前面提到的线性隐层的降维作用(减少训练参数)     这是一个最初版的神经网络语言模型     选取什么要的loss function,为什么用cross-entropy,为什么不用squared loss呢? 首先 可以看到 cross-entropy更能从数值上体…
一.发展 起源:统计语言模型起源于 Ponte 和 Croft 在 1998年的 SIGIR上发表的论文 应用:语言模型的应用很多: corsslingual retrieval distributed IR expert finding passage retrieval web search genomics retrieval 基因组学检索 topic tracking subtopic retrieval 二.basic model 1.Ponte and Croft 核心思想:quer…
原文转载:http://licstar.net/archives/328 Deep Learning 算法已经在图像和音频领域取得了惊人的成果,但是在 NLP 领域中尚未见到如此激动人心的结果.关于这个原因,引一条我比较赞同的微博. @王威廉:Steve Renals算了一下icassp录取文章题目中包含deep learning的数量,发现有44篇,而naacl则有0篇.有一种说法是,语言(词.句子.篇章等)属于人类认知过程中产生的高层认知抽象实体,而语音和图像属于较为底层的原始输入信号,所以…
前一篇文章  用 CNTK 搞深度学习 (一) 入门    介绍了用CNTK构建简单前向神经网络的例子.现在假设读者已经懂得了使用CNTK的基本方法.现在我们做一个稍微复杂一点,也是自然语言挖掘中很火的一个模型: 用递归神经网络构建一个语言模型. 递归神经网络 (RNN),用图形化的表示则是隐层连接到自己的神经网络(当然只是RNN中的一种): 不同于普通的神经网络,RNN假设样例之间并不是独立的.例如要预测“上”这个字的下一个字是什么,那么在“上”之前出现过的字就很重要,如果之前出现过“工作”,…
语言模型简介(Language Model) 简单的说,语言模型 (Language Model) 是用来计算一个句子出现概率的模型,假设句子  ,其中  代表句子中的第  个词语,则语句 W 以该顺序出现的概率可以表示为: 其中 ,  $p(w_n|w_1^{n-1}) = p(w_n|w_1,w_2,...,w_{n-1})$  ,  $ p(w_n|w_1^{n-1})$ 即为 Language Model 的参数,.通常参数的求解用方法是 N-gram 模型,最大熵模型,HMM,CRF…
转自licstar,真心觉得不错,可惜自己有些东西没有看懂 这篇博客是我看了半年的论文后,自己对 Deep Learning 在 NLP 领域中应用的理解和总结,在此分享.其中必然有局限性,欢迎各种交流,随便拍. Deep Learning 算法已经在图像和音频领域取得了惊人的成果,但是在 NLP 领域中尚未见到如此激动人心的结果.关于这个原因,引一条我比较赞同的微博. @王威廉:Steve Renals算了一下icassp录取文章题目中包含deep learning的数量,发现有44篇,而na…
PocketSphinx语音识别系统语言模型的训练和声学模型的改进 zouxy09@qq.com http://blog.csdn.net/zouxy09 关于语音识别的基础知识和sphinx的知识,详细能够參考我的另外两篇博文: 语音识别的基础知识与CMUsphinx介绍: http://blog.csdn.net/zouxy09/article/details/7941585 PocketSphinx语音识别系统的编译.安装和使用: http://blog.csdn.net/zouxy09/…
N-gram统计语言模型 1.统计语言模型 自然语言从它产生開始,逐渐演变成一种上下文相关的信息表达和传递的方式.因此让计算机处理自然语言.一个主要的问题就是为自然语言这样的上下文相关特性建立数学模型. 这个数学模型就是自然语言处理中常说的统计语言模型,它是今天全部自然语言处理的基础,而且广泛应用与机器翻译.语音识别.印刷体和手写体识别.拼写纠错.汉字输入和文献查询. 2.N-Gram N-Gram是大词汇连续语音识别中经常使用的一种语言模型.对中文而言,我们称之为汉语语言模型(CLM, Chi…