随机森林、gbdt算法】的更多相关文章

Bagging与随机森林算法原理总结 在集成学习原理小结中,我们学习到了两个流派,一个是Boosting,它的特点是各个弱学习器之间存在依赖和关系,另一个是Bagging,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合,本文就对集成学习中的Bagging和随机森林做一个总结. 随机森林是集成学习中可以和GBDT相较衡的算法,尤其是它可以很方便地进行并行训练,在现在的大数据大样本下很有诱惑力. 1.Bagging的原理 在集成学习原理总结的Bagging原理这一块,我们画了这么一张流程图 从…
集成学习(Ensemble Learning) 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < 0.5): 集成算法的成功在于保证弱分类器的多样性(Diversity).而且集成不稳定的算法也能够得到一个比较明显的性能提升 常见的集成学习思想有: Bagging Boosting Stacking Why need Ensemble Learning? 1. 弱分…
一. 决策树 决策树(Decision Tree)及其变种是另一类将输入空间分成不同的区域,每个区域有独立参数的算法.决策树分类算法是一种基于实例的归纳学习方法,它能从给定的无序的训练样本中,提炼出树型的分类模型.树中的每个非叶子节点记录了使用哪个特征来进行类别的判断,每个叶子节点则代表了最后判断的类别.根节点到每个叶子节点均形成一条分类的路径规则.而对新的样本进行测试时,只需要从根节点开始,在每个分支节点进行测试,沿着相应的分支递归地进入子树再测试,一直到达叶子节点,该叶子节点所代表的类别即是…
随机森林算法的理论知识 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法.随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代表集成学习技术水平的方法”. 一,随机森林的随机性体现在哪几个方面? 1,数据集的随机选取 从原始的数据集中采取有放回的抽样(bagging),构造子数据集,子数据集的数据量是和原始数据集相同的.不同子数据集的元素可以重复,同一个子数据集中的元素也可以重复. 2,待选特征的随机选取 与数据集的随机选…
tree based ensemble algorithms 主要介绍以下几种ensemble的分类器(tree based algorithms) xgboost lightGBM: 基于决策树算法的分布式梯度提升框架 GBDT(Gradient Boosting Decison Tree) 随机森林 Why is it called random forest 决策树 tree based ensemble algorithms 原始的Boost算法是在算法开始的时候,为每个样本赋上一个权重…
提升决策树GBDT 梯度提升决策树算法是近年来被提及较多的一个算法,这主要得益于其算法的性能,以及该算法在各类数据挖掘以及机器学习比赛中的卓越表现,有很多人对GBDT算法进行了开源代码的开发,比较火的是陈天奇的XGBoost和微软的LightGBM 一.监督学习 1.  监督学习的主要任务 监督学习是机器学习算法中重要的一种,对于监督学习,假设有m个训练样本: 其中, ,如分类问题:也可以为连续值,如回归问题.在监督学习中利用训练样本训练出模型,该模型能够细线从样本特征 . 为了能够对映射F进行…
简单地看了一些入门的资料. 随机森林似乎和CART有些联系. 随机森林的算法步骤: 1. 利用自助法(Bootstrap)从原始训练集中生成k个自助样本集,每个自助样本集是每棵分类树的全部训练数据.自助法(Bootstrap):从原始的样本容量为N的训练集合中随机抽取N个样本生成新的训练集,抽样的方法是有放回的.这样的抽样方式有可能造成新的训练集中存在重复的样本.2. 每个自助样本集生长为单棵分类树.在树的每个节点从M个特征中随机挑选m个特征(mm),利用这m个特征,按照节点不纯度最小的原则选取…
讲授集成学习的概念,Bootstrap抽样,Bagging算法,随机森林的原理,训练算法,包外误差,计算变量的重要性,实际应用 大纲: 集成学习简介 Boostrap抽样 Bagging算法 随机森林的基本原理 训练算法 包外误差 计算变量的重要性 实验环节 实际应用 随机森林是一种集成学习的算法,构建在bootstrap采样基础之上的,bagging算法基于boostrap采样,与之对应的是boosting算法.随机森林是多颗决策树的集成,由于采用了bootstrip采样,在训练时有一部分样本…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com.也可以加我的微博: @leftnoteasy 前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝…
前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的. 美国金融银行业的大数据算法:随机森林模型+综合模型 模型组合(比如说有Boosting,Bagging等)与决策树相关的算法比较多,这些算法最终的结果是生成N(可能会有几百棵以上)棵树,这样可以大大的减少单决策树带来的毛病,有…