Alluxio增强Spark和MapReduce存储能力】的更多相关文章

Alluxio的前身为Tachyon.Alluxio是一个基于内存的分布式文件系统:Alluxio以内存为中心设计,他处在诸如Amazon S3. Apache HDFS 或 OpenStack Swift存储系统和计算框架应用Apache Spark 或Hadoop MapReduce中间,它是架构在底层分布式文件系统和上层分布式计算框架之间的一个中间件. 对上层应用来讲.Alluxio是一个管理数据訪问和高速存储的中间层,对底层存储而言.Alluxio消除了大数据业务和存储系统依赖和鸿沟,…
[前言:笔者将分上下篇文章进行阐述Spark和MapReduce的对比,首篇侧重于"宏观"上的对比,更多的是笔者总结的针对"相对于MapReduce我们为什么选择Spark"之类的问题的几个核心归纳点:次篇则从任务处理级别运用的并行机制/计算模型方面上对比,更多的是让大家对Spark为什么比MapReduce快有一个更深.更全面的认识.通过两篇文章的解读,希望帮助大家对Spark和MapReduce有一个更深入的了解,并且能够在遇到诸如"MapReduce…
在过去几年,Apache Spark的採用以惊人的速度添加着,通常被作为MapReduce后继,能够支撑数千节点规模的集群部署. 在内存中数 据处理上,Apache Spark比MapReduce更加高效已经得到广泛认识:可是当数据量远超内存容量时,我们也听到了一些机构在Spark使用 上的困扰. 因此,我们与Spark社区一起.投入了大量的精力做Spark稳定性.扩展性.性能等方面的提升.既然Spark在GB或TB级别数据上执行 良好.那么它在PB级数据上也应当相同如此. 为了评估这些工作,近…
AlexNet将LeNet的思想发扬光大,把CNN的基本原理应用到了很深很宽的网络中.AlexNet主要使用到的新技术点如下. (1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过了Sigmoid,成功解决了Sigmoid在网络较深时的梯度弥散问题.虽然ReLU激活函数在很久之前就被提出了,但是直到AlexNet的出现才将其发扬光大. (2)训练时使用Dropout随机忽略一部分神经元,以避免模型过拟合.Dropout虽有单独的论文论述,但是AlexNet将其实用化,通过实践…
本来笔者是不打算写MapReduce的,但是考虑到目前很多公司还都在用这个计算引擎,以及后续要讲的Hive原生支持的计算引擎也是MapReduce,并且为Spark和MapReduce的对比做铺垫,笔者今天详细阐述一下MapReduce.鉴于Hadoop1.X已过时,Hadoop3.X目前用的还不多,企业中目前大量运用的还是Hadoop2.X,所以以下都是基于Hadoop2.X版本的MapReduce(后续要讲的HDFS和Yarn也是). MapReduce是Hadoop核心三剑客之一,设计思想…
spark是通过借鉴Hadoop mapreduce发展而来,继承了其分布式并行计算的优点,并改进了mapreduce明显的缺陷,具体表现在以下几方面: 1.spark把中间计算结果存放在内存中,减少迭代过程中的数据落地,能够实现数据高效共享,迭代运算效率高.mapreduce中的计算中间结果是保存在磁盘上的,这样必然影响整体运行速度.   2.spark容错性高.spark支持DAG图的分布式并行计算(简单介绍以下spark DAG:即有向无环图,描述了任务间的先后依赖关系,spark中rdd…
网上查阅一些资料,收集整理如下: 1. 通用性 spark更加通用,spark提供了transformation和action这两大类的多个功能api,另外还有流式处理sparkstreaming模块.图计算GraphX等等:mapreduce只提供了map和reduce两种操作,流计算以及其他模块的支持比较缺乏. 2. 内存利用和磁盘开销 MapReduce的设计:中间结果需要写磁盘,Reduce写HDFS,多个MR之间通过HDFS交换数据,,可以提高可靠性,减少内存占用,但是牺牲了性能. S…
数据库是企业IT系统的核心,其性能表现会直接影响整体业务系统的性能表现,而影响数据库性能因素包括系统架构设计.应用程序业务SQL语句.数据库参数优化配置.数据库运行的资源能力.系统架构设计和应用程序业务SQL语句都属于数据库外围,需要从整体业务上去设计优化:数据库的参数配置,核心是要根据数据库上的业务和硬件特点细调参数,丰富的DBA经验对此项影响很大,归属于软件配置内容且随时可调整.数据库的硬件资源,在传统企业中属于一项固定资产投资,前期投资成本高,后期更换成本更高,云时代虽然能够随时扩容硬件资…
Spark本身是基于内存计算的架构,数据的存储也主要分为内存和磁盘两个路径.Spark本身则根据存储位置.是否可序列化和副本数目这几个要素将数据存储分为多种存储级别.此外还可选择使用Tachyon来管理内存数据. 为了适应迭代计算,Spark将经常被重要的数据缓存到内存中以提升数据读取速度,当内存容量有限时,则将数据存入磁盘中或根据最近最少使用页面置换算法将内存中使用频率较低的文件空间收回,从而让新的数据进来. Tachyon的出现主要是为了解决3个问题而设计.一是多应用数据共享问题,二是JVM…
学习参考自 http://spark-internals.books.yourtion.com/markdown/4-shuffleDetails.html 1.  Shuffle read 边 fetch 边处理还是一次性 fetch 完再处理? 边 fetch 边处理. MapReduce shuffle 阶段就是边 fetch 边使用 combine() 进行处理,只是 combine() 处理的是部分数据.MapReduce 为了让进入 reduce() 的 records 有序,必须等…