倒排索引构建算法BSBI和SPIMI】的更多相关文章

参考:https://blog.csdn.net/androidlushangderen/article/details/44889677 倒排索引 : 一般的索引检索信息的方式.比如原始的数据源假设都是以文档的形式被分开,文档1拥有一段内容,文档2也富含一段内容,文档3同样如此.然后给定一个关键词,要搜索出与此关键词相关的文档,自然而然我们联想到的办法就是一个个文档的内容去比较,判断是否含有此关键词,如果含有则返回这个文档的索引地址,如果不是接着用后面的文档去比,这就有点类似于字符串的匹配类似…
课程地址:https://class.coursera.org/ntumltwo-002/lecture 重要!重要!重要~ 一.决策树(Decision Tree).口袋(Bagging),自适应增强(AdaBoost) Bagging和AdaBoost算法再分类的时候,是让所有的弱分类器同时发挥作用.它们之间的区别每个弱分离器是否对后来的blending生成G有相同的权重. Decision Tree是一种有条件的融合算法,每次只能根据条件让某个分类器发挥作用. 二.基本决策树算法 1.用递…
一.倒排索引简单介绍 倒排索引(英语:Inverted index),也常被称为反向索引.置入档案或反向档案,是一种索引方法,被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射. 它是文档检索系统中最经常使用的数据结构. 以英文为例.以下是要被索引的文本: T0="it is what it is" T1="what is it" T2="it is a banana" 我们就能得到以下的反向文件索引: "a&quo…
这个网站值得收藏一下,原文链接:http://shiyanjun.cn/archives/428.html 决策树算法的优越性在于:离散学习算法进行组合总可以表达任意复杂的布尔函数,并不受数据集的限制即学习没有饱和性,只是现实应用受限于时间和计算能力,一般不能满足不饱和性. C4.5是机器学习算法中的另一个分类决策树算法,它是基于ID3算法进行改进后的一种重要算法,相比于ID3算法,改进有如下几个要点: 用信息增益率来选择属性.ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,I…
Ukkonen算法是一个非常直观的算法,其思想精妙之处在于不断加字符的过程中,用字符串上的一段区间来表示一条边,并且自动扩展,在需要的时候把边分裂.使用这个算法的好处在于它非常好写,代码很短,并且它是在线的,时间复杂度为\(O(n)\) ,是后缀树构建算法的佳选. 算法 我们保存当前节点now的位置,以及剩下还没有实际上插入的后缀数量remain.设当前字符串中已插入的字符数量为\(n\). 最开始remain+1,n+1,代表当前字符串中多了一个字符,多了一个需要插入的后缀.很明显,当前我们要…
如何构建与选择异常检测算法中的features 如果我的feature像图1所示的那样的正态分布图的话,我们可以很高兴地将它送入异常检测系统中去构建算法. 如果我的feature像图2那样不是正态分布的话,虽然我们也可以很好的运行算法,但是我们通常会使用一些转换方法,使数据看下来更像高斯分布,这样算法会工作得更好. 给出上图中下面的这个数据集,可以对其进行一个求对数的转换,这样可以得到一个更像高斯分布的图,这样我们就可以评估出u和σ2了. 在octave里面使用hist来画柱状图,默认是10个柱…
MapReduce 支持的部分数据挖掘算法 MapReduce 能够解决的问题有一个共同特点:任务可以被分解为多个子问题,且这些子问题相对独立,彼此之间不会有牵制,待并行处理完这些子问题后,任务便被解决.在实际应用中,这类问题非常庞大,谷歌在论文中提到了MapReduce 的一些典型应用,包括分布式grep.URL 访问频率统计.Web 连接图反转.倒排索引构建.分布式排序等,这些均是比较简单的应用.下面介绍一些比较复杂的应用. (1)TopK 问题 我们要选择一个酒店入住,有a-g个备选,每个…
不论今天的计算机技术变化,新技术的出现,所有都是来自数据结构与算法基础.我们需要温故而知新.        算法.架构.策略.机器学习之间的关系.在过往和技术人员交流时,很多人对算法和架构之间的关系感到不可理解,算法是软的,架构是硬的,难道算法和架构还有什么关系不成?其实不然,算法和架构的关系非常紧密.在互联网时代,我们需要用算法处理的数据规模越来越大,要求的处理时间越来越短,单一计算机的处理能力是不可能满足需求的.而架构技术的发展,带来了很多不同特点的分布式计算平台.算法为了能够应用到这些分布…
1.前言 学习hadoop的童鞋,倒排索引这个算法还是挺重要的.这是以后展开工作的基础.首先,我们来认识下什么是倒拍索引: 倒排索引简单地就是:根据单词,返回它在哪个文件中出现过,而且频率是多少的结果.这就像百度里的搜索,你输入一个关键字,那么百度引擎就迅速的在它的服务器里找到有该关键字的文件,并根据频率和其他一些策略(如页面点击投票率)等来给你返回结果.这个过程中,倒排索引就起到很关键的作用. 2.分析设计 倒排索引涉及几个过程:Map过程,Combine过程,Reduce过程.下面我们来分析…
常见的一种决策树算法是ID3,ID3的做法是每次选择当前最佳的特征来分割数据,并按照该特征所有可能取值来切分,也就是说,如果一个特征有四种取值,那么数据将被切分成4份,一旦按某特征切分后,该特征在之后的算法执行过程中将不会在起作用,这种切分方法比较迅速,但是一个比较明显的缺点是不能直接处理连续型的特征,只有事先将连续型的数据转换成离散型才能再ID3算法中使用. CART(Classification And Regression Tree)算法采用一种二分递归分割的技术,将当前的样本集分为两个子…
构建算法 k-d树是一个二叉树,每个节点表示一个空间范围.表1给出的是k-d树每个节点中主要包含的数据结构. 表1 k-d树中每个节点的数据类型 域名 数据类型 描述 Node-data 数据矢量 数据集中某个数据点,是n维矢量(这里也就是k维) Range 空间矢量 该节点所代表的空间范围 split 整数 垂直于分割超平面的方向轴序号 Left k-d树 由位于该节点分割超平面左子空间内所有数据点所构成的k-d树 Right k-d树 由位于该节点分割超平面右子空间内所有数据点所构成的k-d…
k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据结构.主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索). 应用背景 SIFT算法中做特征点匹配的时候就会利用到k-d树.而特征点匹配实际上就是一个通过距离函数在高维矢量之间进行相似性检索的问题.针对如何快速而准确地找到查询点的近邻,现在提出了很多高维空间索引结构和近似查询的算法,k-d树就是其中一种. 索引结构中相似性查询有两种基本的方式:一种是范围查询(range searches),另一种是K近邻查询(K…
本文介绍一种用于高维空间中的高速近期邻和近似近期邻查找技术--Kd-Tree(Kd树). Kd-Tree,即K-dimensional tree,是一种高维索引树形数据结构,经常使用于在大规模的高维数据空间进行近期邻查找(Nearest Neighbor)和近似近期邻查找(Approximate Nearest Neighbor),比如图像检索和识别中的高维图像特征向量的K近邻查找与匹配.本文首先介绍Kd-Tree的基本原理,然后对基于BBF的近似查找方法进行介绍.最后给出一些參考文献和开源实现…
本文来自<机器学习实战>(Peter Harrington)第九章"树回归"部分,代码使用python3.5,并在jupyter notebook环境中测试通过,推荐clone仓库后run cell all就可以了. github地址:https://github.com/gshtime/machinelearning-in-action-python3 转载请标明原文链接 1 原理 CART(Classification and Regression Trees,分类回归…
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时候,稍许感受到受人信任也是一种压力,愿我不辜负大家对我的信任…
一:概念 Builder模式也叫建造者模式或者生成器模式,是由GoF提出的23种设计模式中的一种.Builder模式是一种对象创建型模式之一,用来隐藏复合对象的创建过程,它把复合对象的创建过程加以抽象,通过子类继承和重载的方式,动态地创建具有复合属性的对象. 对象的创建:Builder模式是为对象的创建而设计的模式 创建的是一个复合对象:被创建的对象为一个具有复合属性的复合对象 关注对象创建的各部分的创建过程:不同的工厂(这里指builder生成器)对产品属性有不同的创建方法. 二:动机 在软件…
Logistic Regression with a Neural Network mindset You will learn to: Build the general architecture of a learning algorithm, including: Initializing parameters(初始化参数) Calculating the cost function and its gradient(计算代价函数,和他的梯度) Using an optimization…
(2017-05-18 银河统计) 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来判断其可行性的决策分析方法,是直观运用概率分析的一种图解法.由于这种决策分支画成图形很像一棵树的枝干,故称决策树.在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系. 决策树是对数据进行分类,以此达到预测的目的.决策树方法先根据训练集数据形成决策树,如果该树不能对所有对象给出正确的分类,那么选择一些例外加入到训练集数据中,重复该过程一直到形成正确…
原文地址:https://kylin.apache.org/docs16/howto/howto_optimize_build.html Kylin将一个cube的build过程分解为若干个子步骤,然后串行执行这些子步骤.这些步骤包括Hive操作,MR任务和其他类型的工作.如果每天都有许多cube进行build操作,那么肯定会办法加速这一过程.这里有一些建议可以参考,我们就按照build的顺序依次介绍. Create Intermediate Flat Hive Table 该步骤会从源Hive…
本文转自: http://hbasefly.com/2018/02/09/timeseries-database-5/ 在时序数据库概述一文中,笔者提到时序数据库的基础技术栈主要包括高吞吐写入实现.数据分级存储|TTL.数据高压缩率.多维度查询能力以及高效聚合能力等,上文<时序数据库技术体系 – InfluxDB存储引擎TSM>基于InfluxDB存储引擎TSM介绍了时序数据库的高性能写入能力以及基于列式存储的数据高压缩率实现.接下来两篇文章分别基于InfluxDB系统的倒排索引实现以及Dru…
1.声明一个char类型的数组,  从键盘录入6个字符[1]遍历输出[2]排序[3]把char数组转化成一个逆序的数组 总结:分析问题时,先问自己,需要用到什么? 对于这题,第一步:先写一个main方法: 第二步:需要声明一个数组: 第三步:需要用到Scanner的控制台输入:(列如:String tmp=sc.next();定义一个string类型的tmp(我把它理解成堆内存的地址),把从控制台输入的sc对象依次导入到堆内存当中) 这三步我把它理解成构建算法的基石 (1)在第一问当中,当看到问…
0-购买预测 w 任务目标 提交user_id-->sku_id (1->1,但反向呢?) 实际操作: 0- 行为表中的type值加权为一个购买意向值0(性别.年龄,不干扰/或加权) 品类.性别加权 评论加权 1- 数据分2部分 答案货品集,用来生成最终提交结果 非答案货品集,用来分析品类与性别 参赛者需要使用京东多个品类下商品的历史销售数据,构建算法模型,预测用户在未来5天内,对某个目标品类下商品的购买意向.对于训练集中出现的每一个用户,参赛者的模型需要预测该用户在未来5天内是否购买目标品类…
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时…
不多说,直接上干货! 1. Cube的物理模型 Cube物理模型 如上图所示,一个常用的3维立方体,包含:时间.地点.产品.假如data cell 中存放的是产量,则我们可以根据时间.地点.产品来确定产量,同时也可以根据时间.地点来确定所有产品的总产量等. Apache Kylin就将所有(时间.地点.产品)的各种组合实现算出来,data cell 中存放度量,其中每一种组合都称为cuboid.估n维的数据最多有2^n个cuboid,不过Kylin通过设定维度的种类,可以减少cuboid的数目.…
欢迎增加Cocos2d-x 交流群:193411763 个中心点.1个旋转矩阵和3个1/2边长(注:一个旋转矩阵包括了三个旋转轴,若是二维的OBB包围盒则是一个中心点,两个旋转轴,两个1/2边长).       上述最后一种方法就是最经常使用的方法.下面来看一段Cocos2d-x 3.3beta0中CCOBB.h中的代码:         Vec3 _center; // 中心点 /* 下面三个变量为正交单位向量. 定义了当前OBB包围盒的x,y,z轴 用于计算矢量投影 */ Vec3 _xAx…
最近在学python,网上很难找到对应的算法题网站,专业算法网站大部分都是国外的,之前在w3cschool看到有三个级别的Javascript脚本算法挑战,尝试用python实现,代码量相对比较少,如果你有更好的解法,还请不吝赐教,初学python,希望和大家一起日有所长. 目录 1.判断电话号码算法挑战 2.集合交集算法挑战 3.收银系统算法挑战 4.库存更新算法挑战 5.排列组合去重算法挑战 6.日期改写算法挑战 7.类及对象构建算法挑战 8.轨道周期算法挑战 9.数据组合求值算法挑战 1.…
原文:[HLSL学习笔记]WPF Shader Effect Library算法解读之[BandedSwirl] 因工作原因,需要在Silverlight中使用Pixel Shader技术,这对于我来说可算是相当有难度了,首先我是个Java Web开发程序员,从来没正经地学过微软的开发语言和工具:其次,对于算法这种东西,向来有种天生的排斥,一看便头疼.不过项目逼到份上了,只能硬着头皮上,真不知道领导们是怎么想的.还是言归正传吧,记录记录自己的学习心得. 熟悉Silverlight的人都知道,SL…
1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1时,算法便成了最近邻算法,即寻找最近的那个邻居. 用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居),这K个实例的多数属于某个类,就把该输入实例分类到这个类中. 如上图所示,有两类不同的样本数据,分别用蓝色的…
k-d tree算法 k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据结构.主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索). 应用背景 SIFT算法中做特征点匹配的时候就会利用到k-d树.而特征点匹配实际上就是一个通过距离函数在高维矢量之间进行相似性检索的问题.针对如何快速而准确地找到查询点的近邻,现在提出了很多高维空间索引结构和近似查询的算法,k-d树就是其中一种. 索引结构中相似性查询有两种基本的方式:一种是范围查询(range searches),…
KNN算法总结 KNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别.(监督) k近邻算法(knn)是一种基本的分类与回归的算法,k-means是一种基本的聚类方法. 在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是K个数据中出现次数最多的那个分类,其算法的描述为: 1)计算测试数据与各个训练数据之间的距离: 2)按照距离的…