选带傅里叶变换(zoom-fft)】的更多相关文章

选带傅里叶变换的原理大家能够看书.大致的步骤为 移频 (将选带的中心频率移动到零频) 数字低通滤波器  (防止频率混叠) 又一次採样  (将採样的数据再次间隔採样,间隔的数据取决于分析的带宽,就是放大倍数) 复FFT (因为经过了移频,所以数据不是实数了) 频率调整 (将负半轴的频率成分移到正半轴) 程序例如以下: function [f, y] = zfft(x, fi, fa, fs) % x为採集的数据 % fi为分析的起始频率 % fa为分析的截止频率 % fs为採集数据的採样频率 %…
快速傅里叶变换(FFT) FFT 是之前学的,现在过了比较久的时间,终于打算在回顾的时候系统地整理一篇笔记,有写错的部分请指出来啊 qwq. 卷积 卷积.旋积或褶积(英语:Convolution)是通过两个函数 \(f\) 和 \(g\)​​ 生成第三个函数的一种数学算子. 定义 设 \(f,g\)​ 在 \(R1\)​ 上可积,那么 \(h(x) = \int_{-∞}^∞f(\tau)g(x-\tau)d\tau\) 称为 \(f\) 与 \(g\)​ 的卷积. 对于整系数多项式域,\(n-…
这可能是我第五次学FFT了--菜哭qwq 先给出一些个人认为非常优秀的参考资料: 一小时学会快速傅里叶变换(Fast Fourier Transform) - 知乎 小学生都能看懂的FFT!!! - 胡小兔 - 博客园 快速傅里叶变换(FFT)用于计算两个\(n\)次多项式相乘,能把复杂度从朴素的\(O(n^2)\)优化到\(O(nlog_2n)\).一个常见的应用是计算大整数相乘. 本文中所有多项式默认\(x\)为变量,其他字母均为常数.所有角均为弧度制. 一.多项式的两种表示方法 我们平时常…
前言 如果我们能用一种时间上比 \(O(n^2)\) 更优秀的方法来计算大整数(函数)的乘法,那就好了.快速傅里叶变换(FFT) 可以帮我们在 \(O(n\log n)\) 的时间内解决问题. 函数乘积 计算两个大整数之积时,我们发现 \[(2x+3)(4x+5)=8x^2+22x+15\quad...(*)\\ 23\times45=1035\] 而如果我们把 \((*)\) 式右边的每一位的系数看做一个数每位上的数码,正好得到了 \(1035\).事实上,对于所有的多项式乘法,以上规律同样成…
快速傅里叶变换(FFT)                                                                               ---- LLppdd 前言 关于这篇文章     非常高兴能有机会来探讨快速傅里叶变换,也就是大家熟知的 \(FFT\) 在 \(OI\) 中的运用.以前了解过一次 \(FFT\) ,现在过了几个月,数学和 \(OI\) 水平都有了一定的进步之后,再回过来重新思考它,应该有了更深的了解,所以准备写一篇较为详细的文章…
目录 参考资料 FFT 吹水 例题 普通做法 更高大尚的做法 定义与一部分性质 系数表达式 点值表达式 点值相乘??? 卷积 复数 单位根 DFT IDFT 蝴蝶迭代优化 单位根求法 实现.细节与小优化 细节 小优化 实现 超~毒瘤优化. 实战! First Second 温馨插入:生成函数 Third 总所周知,FFT是一个非常麻烦的算法,再加上博主语文不好,便写起来有点麻烦,但会尽力去写.要以后自己看不懂就... 注:因为最近的压力紧张,便没有继续学习FFT,这仅为目前的半成品以及一些目前已…
一.FFT的意义 DFT虽然实现了FT的计算机计算,但是计算量大,不适合实时的数字信号处理.FFT算法的出现,使DFT的计算效率更高,速度更快. 二.FFT与DFT的关系 从FT到DFT经过了数字角频率w的离散化,由此带来了一些数学公式的改写.而FFT是DFT算法上的突破,可以说数学理论上与DFT是一样的.可以认为,FFT就是DFT的一种快速好用的计算方法,FFT替代了定义法计算的笨拙,如此而已.正因为如此,所以可以看到FFT与DFT的运算结果是相同的. 三.matlab实验 1.程序 L=;…
快速傅里叶变换(Fast Fourier Transform)是信号处理与数据分析领域里最重要的算法之一.我打开一本老旧的算法书,欣赏了JW Cooley 和 John Tukey 在1965年的文章中,以看似简单的计算技巧来讲解这个东西. 本文的目标是,深入Cooley-Tukey  FFT 算法,解释作为其根源的“对称性”,并以一些直观的python代码将其理论转变为实际.我希望这次研究能对这个算法的背景原理有更全面的认识. FFT(快速傅里叶变换)本身就是离散傅里叶变换(Discrete…
简介: FFT主要运用于快速卷积,其中一个例子就是如何将两个多项式相乘,或者高精度乘高精度的操作. 显然暴搞是$O(n^2)$的复杂度,然而FFT可以将其将为$O(n lg n)$. 这看起来十分玄学,因为怎么看它们的相乘操作都逃不过$O(n^2)$,FFT是如何再减少复杂度的呢? 讲到FFT就不可避免地出现公式,但实际上它们都是比较容易理解的. 全局思路 设两个次数界均为$n$的多项式$\begin{aligned}A(x)&=a_0x^0+a_1x^1+a_2x^2+...+a_{n-1}x…
图:信号在时域上和频域上的直观表示 1. 计算一维离散傅里叶变换(DFT)公式如下: 其中,N表示数据长度.由上式可知,DFT的时间复杂度是O(N*N) 2. 一维FFT的时间复杂度为O(N*logN),其中N表示数据长度 3. 对于一个M*N的二维数据,FFT的时间复杂度为O( M*N*log(M*N) ) 若M=N,则时间复杂度可以简化为O(N^2*logN) 4. 对于M维的数据(每一维长度为A,B,C,...),则FFT的时间复杂度为O( A*B*C*...* log(A*B*C*...…