转自:https://blog.csdn.net/Orange_Spotty_Cat/article/details/80499031 略有改动,仅供个人学习使用 简介 ROC曲线与AUC面积均是用来衡量分类型模型准确度的工具.通俗点说,ROC与AUC是用来回答这样的问题的: 分类模型的预测到底准不准确? 我们建出模型的错误率有多大?正确率有多高? 两个不同的分类模型中,哪个更好用?哪个更准确? 一句话概括版本: ROC是一条线,如果我们选择用ROC曲线评判模型的准确性,那么越靠近左上角的ROC…
AUC(Area under Curve):Roc曲线下的面积,介于0.1和1之间.Auc作为数值可以直观的评价分类器的好坏,值越大越好. 首先AUC值是一个概率值,当你随机挑选一个正样本以及负样本,当前的分类算法根据计算得到的Score值将这个正样本排在负样本前面的概率就是AUC值,AUC值越大,当前分类算法越有可能将正样本排在负样本前面,从而能够更好地分类. 1. 什么是ROC曲线? ROC曲线是Receiver operating characteristic curve的简称,中文名为“…
转自:https://blog.csdn.net/Orange_Spotty_Cat/article/details/80520839 略有改动,仅供个人学习使用 简介 混淆矩阵是ROC曲线绘制的基础,同时它也是衡量分类型模型准确度中最基本,最直观,计算最简单的方法. 一句话解释版本:混淆矩阵就是分别统计分类模型归错类,归对类的观测值个数,然后把结果放在一个表里展示出来.这个表就是混淆矩阵. 数据分析与挖掘体系位置 混淆矩阵是评判模型结果的指标,属于模型评估的一部分.此外,混淆矩阵多用于判断分类…
一.前述 怎么样对训练出来的模型进行评估是有一定指标的,本文就相关指标做一个总结. 二.具体 1.混淆矩阵 混淆矩阵如图:  第一个参数true,false是指预测的正确性.  第二个参数true,postitives是指预测的结果.  相关公式: 检测正列的效果: 检测负列的效果: 公式解释: fp_rate: tp_rate: recall:(召回率) 值越大越好 presssion:(准确率) TP:本来是正例,通过模型预测出来是正列 TP+FP:通过模型预测出来的所有正列数(其中包括本来…
1. 混淆矩阵 确定截断点后,评价学习器性能 假设训练之初以及预测后,一个样本是正例还是反例是已经确定的,这个时候,样本应该有两个类别值,一个是真实的0/1,一个是预测的0/1 TP(实际为正预测为正),FP(实际为负但预测为正),TN(实际为负预测为负),FN(实际为正但预测为负) 通过混淆矩阵我们可以给出各指标的值:查全率(召回率,recall):样本中的正例有多少被预测准确了,衡量的是查全率,预测对的正例数占真正的正例数的比率: 查全率=检索出的相关信息量 / 系统中的相关信息总量 = T…
作为机器学习重要的评价指标,标题中的三个内容,在下面读书笔记里面都有讲: http://www.cnblogs.com/charlesblc/p/6188562.html 但是讲的不细,不太懂.今天又理解了一下.看了这篇文章: https://www.douban.com/note/247271147/?type=like 讲的很好. 都是基于这张图,先贴一下: PR Precision-Recall曲线,这个东西应该是来源于信息检索中对相关性的评价吧,precision就是你检索出来的结果中,…
本文根据以下文章整理而成,链接: (1)http://blog.csdn.net/ice110956/article/details/20288239 (2)http://blog.csdn.net/chjjunking/article/details/5933105   1.概述 AUC(Area Under roc Curve)是一种用来度量分类模型好坏的一个标准.这样的标准其实有很多,例如:大约10年前在machine learning文献中一统天下的标准:分类精度:在信息检索(IR)领域…
相关评价指标在这片文章里有很好介绍 信息检索(IR)的评价指标介绍 - 准确率.召回率.F1.mAP.ROC.AUC:http://blog.csdn.net/marising/article/details/6543943 ROC曲线:接收者操作特征(receiveroperating characteristic) 比较分类模型的可视工具,曲线上各点反映着对同一信号刺激的感受性. 纵轴:真正率(击中率)true positive rate ,TPR,称为灵敏度.所有实际正例中,正确识别的正例…
本文首先从整体上介绍ROC曲线.AUC.Precision.Recall以及F-measure,然后介绍上述这些评价指标的有趣特性,最后给出ROC曲线的一个Python实现示例. 一.ROC曲线.AUC.Precision.Recall以及F-measure 二分类问题的预测结果可能正确,也可能不正确.结果正确存在两种可能:原本对的预测为对,原本错的预测为错:结果错误也存在两种可能:原本对的预测为错,原本错的预测为对,如Fig 1左侧所示.其中Positives代表预测是对的,Negatives…
准确率.精确率(查准率).召回率(查全率).F1值.ROC曲线的AUC值,都可以作为评价一个机器学习模型好坏的指标(evaluation metrics),而这些评价指标直接或间接都与混淆矩阵有关,前四者可以从混淆矩阵中直接计算得到,AUC值则要通过ROC曲线进行计算,而ROC曲线的横纵坐标又和混淆矩阵联系密切,所以在了解这些评价指标之前,先知道什么是混淆矩阵很有必要,也方便记忆. 1.混淆矩阵 对于一个二分类问题,我们可以得到如表 1所示的的混淆矩阵(confusion matrix): 表…