语言模型评价指标Perplexity】的更多相关文章

在信息论中,perplexity(困惑度)用来度量一个概率分布或概率模型预测样本的好坏程度.它也可以用来比较两个概率分布或概率模型.(应该是比较两者在预测样本上的优劣)低困惑度的概率分布模型或概率模型能更好地预测样本. 困惑度越小,句子概率越大,语言模型越好. wiki上列举了三种perplexity的计算: 1. 概率分布的perplexity 公式: 离散概率分布p的困惑度由下式给出 其中H(p) 是该分布的熵,x遍历事件空间. 随机变量X的复杂度由其所有可能的取值x定义. 一个特殊的例子是…
在LDA主题模型之后,需要对模型的好坏进行评估,以此依据,判断改进的参数或者算法的建模能力. Blei先生在论文<Latent Dirichlet Allocation>实验中用的是Perplexity值作为评判标准. 一.Perplexity定义 源于wiki:http://en.wikipedia.org/wiki/Perplexity perplexity是一种信息理论的测量方法,b的perplexity值定义为基于b的熵的能量(b可以是一个概率分布,或者概率模型),通常用于概率模型的比…
作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/252 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 ShowMeAI为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learn…
1. 前言 近一年来,NLP领域发展势头强劲,从ELMO到LSTM再到去年最牛叉的Google Bert,在今年年初,Facebook又推出了XLM模型,在跨语言预训练领域表现抢眼.实验结果显示XLM在XNLI任务上比原来的state-of-the-art直接高了4.9个百分点:在无监督机器翻译WMT'16 German-English中,比原来的state-of-the-art高了9个BLEU:在有监督的机器翻译WMT'16 Romanian-English中,比原来的state-of-the…
有了一个语言模型,就要判断这个模型的好坏. 现在假设: 我们有一些测试数据,test data.测试数据中有m个句子;s1,s2,s3-,sm 我们可以查看在某个模型下面的概率: 我们也知道,如果计算相乘是非常麻烦的,可以在此基础上,以另一种形式来计算模型的好坏程度. 在相乘的基础上,运用Log,来把乘法转换成加法来计算.   补充一下,在这里的p(Si)其实就等于我们前面所介绍的q(the|*,*)*q(dog|*,the)*q(-)- 有了上面的式子,评价一个模型是否好坏的原理在于: a g…
一.如何评价语言模型的好坏 标准:比起语法不通的.不太可能出现的句子,是否为“真实”或"比较可能出现的”句子分配更高的概率 过程:先在训练数据集上训练模型的参数,然后在测试数据集上测试模型的效果. 要求:测试数据集与训练数据集完全不同 评价指标:用以评价模型的测试数据集上的效果 二.N-gram 模型的外部评测 1. 比较两个模型最好的评价方法: 将两个模型A和B应用于同一个任务:拼写检查.语音识别.机器翻译等 运行这个任务,分别得到A和B的准确性:有多少个拼写错误的单词被恰当的纠正了?或者有多…
一.背景 近期研究了一下语言模型,同事推荐了一个比较好用的工具包kenlm,记录下使用过程. 二.使用kenlm训练 n-gram 1.工具介绍:http://kheafield.com/code/kenlm/ 2.工具包的下载地址:http://kheafield.com/code/kenlm.tar.gz 3.解压后运行,./bjam 进行编译 4.使用如下命令进行训练:bin/lmplz -o 5 --verbose_header --text data/chat_log.txt --ar…
转载请注明:电子科技大学EClab——落叶花开http://www.cnblogs.com/nlp-yekai/p/3816532.html 困惑度一般在自然语言处理中用来衡量训练出的语言模型的好坏.在用LDA做主题和词聚类时,原作者D.Blei就是采用了困惑度来确定主题数量.文章中的公式为: perplexity=exp^{ - (∑log(p(w))) / (N) } 其中,P(W)是指的测试集中出现的每一个词的概率,具体到LDA的模型中就是P(w)=∑z p(z|d)*p(w|z)[z,d…
看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图片中的物体.理解物体间的关系,并用一句自然语言表达出来. 应用场景:比如说用户在拍了一张照片后,利用Image Caption技术可以为其匹配合适的文字,方便以后检索或省去用户手动配字:此外它还可以帮助视觉障碍者去理解图像内容.类似的任务还有Video Caption,输入是一段视频,输出是对视频的…
神经结构进步.GPU深度学习训练效率突破.RNN,时间序列数据有效,每个神经元通过内部组件保存输入信息. 卷积神经网络,图像分类,无法对视频每帧图像发生事情关联分析,无法利用前帧图像信息.RNN最大特点,神经元某些输出作为输入再次传输到神经元,可以利用之前信息. xt是RNN输入,A是RNN节点,ht是输出.对RNN输入数据xt,网络计算得输出结果ht,某些信息(state,状态)传到网络输入.输出ht与label比较得误差,用梯度下降(Gradient Descent)和Back-Propag…