keras手写数字识别】的更多相关文章

参考:台大李宏毅老师视频课程-Keras-Demo 在载入数据阶段报错: ConnectionResetError: [WinError 10054] 远程主机强迫关闭了一个现有的连接 Google之后找到一篇内容相近博文:手写数字识别---demo 问题解决步骤: 1-去官网下载了数据集: 数据集网址(宝可梦大师课程里也有提到过):http://yann.lecun.com/exdb/mnist/ 2-将下载好的数据集放在一定的位置 将如下代码另存为一个文件load_data.py,后面直接i…
提示:建议先看day36-38的内容 TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor).它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等. TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机…
import kerasimport timefrom keras.utils import np_utils start = time.time()(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()SHAPE = 28 * 28CLASSES = 10x_train = x_train.reshape(x_train.shape[0], SHAPE)x_test = x_test.reshape(x_t…
参考: 原视频:李宏毅机器学习-Keras-Demo 调参博文1:深度学习入门实践_十行搭建手写数字识别神经网络 调参博文2:手写数字识别---demo(有小错误) 代码链接: 编程环境: 操作系统:win7 - CPU anaconda-Python3-jupyter notebook tersonFlow:1.10.0 Keras:2.2.4 背景: 视频里宝可梦大师提供的部分参数设置不能得到好的结果,这里记录一下后续调参 1-载入数据报错的问题: 载入数据运行时报错:[WinError 1…
keras框架的MLP手写数字识别MNIST 代码: # coding: utf-8 # In[1]: import numpy as np import pandas as pd from keras.utils import np_utils np.random.seed(10) # In[2]: from keras.datasets import mnist # In[3]: (x_train_image,y_train_label),(x_test_image,y_test_label…
一.手写数字识别 现在就来说说如何使用神经网络实现手写数字识别. 在这里我使用mind manager工具绘制了要实现手写数字识别需要的模块以及模块的功能:  其中隐含层节点数量(即神经细胞数量)计算的公式(这只是经验公式,不一定是最佳值): m=n+l−−−−√+am=n+l+a  m=log2nm=log2⁡n  m=nl−−√m=nl  m: 隐含层节点数 n: 输入层节点数 l:输出层节点数 a:1-10之间的常数 本例子当中: 输入层节点n:784 输出层节点:10 (表示数字 0 ~…
MNIST手写数字集 MNIST是一个由美国由美国邮政系统开发的手写数字识别数据集.手写内容是0~9,一共有60000个图片样本,我们可以到MNIST官网免费下载,总共4个.gz后缀的压缩文件,该文件是二进制内容. train-images-idx3-ubyte.gz:  training set images     图片样本,用来训练模型 train-labels-idx1-ubyte.gz:  training set labels     图片样本对应的数字标签 t10k-images-…
#基于mnist数据集的手写数字识别 #构造了cnn网络拟合识别函数,前两层为卷积层,第三层为池化层,第四层为Flatten层,最后两层为全连接层 #基于Keras 2.1.1 Tensorflow 1.4.0 代码: from __future__ import print_function import numpy as np np.random.seed(1337) from keras.datasets import mnist from keras.models import Sequ…
#基于mnist数据集的手写数字识别 #构造了三层全连接层组成的多层感知机,最后一层为输出层 #基于Keras 2.1.1 Tensorflow 1.4.0 代码: import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense,Dropout from keras.optimizers import RMSprop (x_train,…
在<手写数字识别——手动搭建全连接层>一文中,我们通过机器学习的基本公式构建出了一个网络模型,其实现过程毫无疑问是过于复杂了——不得不考虑诸如数据类型匹配.梯度计算.准确度的统计等问题,但是这样的实践对机器学习的理解是大有裨益的.在大多数情况下,我们还是希望能多简单就多简单地去搭建网络模型,这同时也算对得起TensorFlow这个强大的工具了.本节,还是以手写数据集MNIST为例,利用TensorFlow2.0的keras高层API重现之前的网络. 一.数据的导入与预处理 关于这个过程,与上节…