Spark机器学习基础-监督学习】的更多相关文章

监督学习 0.线性回归(加L1.L2正则化) from __future__ import print_function from pyspark.ml.regression import LinearRegression from pyspark.sql import SparkSession spark = SparkSession\ .builder\ .appName("LinearRegressionWithElasticNet")\ .getOrCreate() # 加载数…
0.K-means from __future__ import print_function from pyspark.ml.clustering import KMeans#硬聚类 #from pyspark.ml.evaluation import ClusteringEvaluator#2.2版本支持评估,2.1版本不支持 from pyspark.sql import SparkSession ! head -5 data/mllib/sample_kmeans_data.txt#展示…
spark的机器学习库,包含常见的学习算法和工具如分类.回归.聚类.协同过滤.降维等使用算法时都需要指定相应的数据集,下面为大家介绍常用的spark ml 数据类型.1.本地向量(Local Vector)存储在单台机器上,索引采用0开始的整型表示,值采用Double类型的值表示.Spark MLlib中支持两种类型的矩阵,分别是密度向量(Dense Vector)和稀疏向量(Spasre Vector),密度向量会存储所有的值包括零值,而稀疏向量存储的是索引位置及值,不存储零值,在数据量比较大…
监督学习 0.线性回归(加L1.L2正则化) from __future__ import print_function from pyspark.ml.regression import LinearRegression from pyspark.sql import SparkSession spark = SparkSession\ .builder\ .appName("LinearRegressionWithElasticNet")\ .getOrCreate() # 加载数…
无监督学习 0.K-means from __future__ import print_function from pyspark.ml.clustering import KMeans #from pyspark.ml.evaluation import ClusteringEvaluator from pyspark.sql import SparkSession import pandas as pd spark = SparkSession\ .builder\ .appName("K…
特征工程 对连续值处理 0.binarizer/二值化 from __future__ import print_function from pyspark.sql import SparkSession from pyspark.ml.feature import Binarizer spark = SparkSession\ .builder\ .appName("BinarizerExample")\ .getOrCreate() # 创建DataFrame continuous…
对连续值处理 0.binarizer/二值化 from __future__ import print_function from pyspark.sql import SparkSession from pyspark.ml.feature import Binarizer#ml相对于mllib更全一点,更新一点 spark = SparkSession\ .builder\ .appName("BinarizerExample")\ .getOrCreate() continuou…
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库:https://github.com/Holy-Shine/Introduciton-2-ML-with-Python-notebook 系列教程总目录 Python机器学习基础教程 引子 导入必要的包 import numpy as np import matplotlib.pyplot as plt im…
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库:https://github.com/Holy-Shine/Introduciton-2-ML-with-Python-notebook 系列教程总目录 Python机器学习基础教程 引子 先导入必要的包 import numpy as np import matplotlib.pyplot as plt i…
前面主要回顾了无监督学习中的三种降维方法,本节主要学习另一种无监督学习AutoEncoder,这个方法在无监督学习领域应用比较广泛,尤其是其思想比较通用. AutoEncoder 0.AutoEncoder简介 在PCA一节中提到,PCA的可以看做是一种NN模型,通过输入数据,乘以权重w即可得到降维后的数据c,然后再利用c将数据进行还原.如下图: 上面就是AutoEncoder的基本结构,对于前半部分(降维)是一个Encoder的过程,而对于后半部分(还原)则是一个Decoder的过程. 这里E…