Hive优化-大表join大表优化】的更多相关文章

5.大表join大表优化 如果Hive优化实战2中mapjoin中小表dim_seller很大呢?比如超过了1GB大小?这种就是大表join大表的问题.首先引入一个具体的问题场景,然后基于此介绍各自优化方案. 5.1.问题场景 问题场景如下: A表为一个汇总表,汇总的是卖家买家最近N天交易汇总信息,即对于每个卖家最近N天,其每个买家共成交了多少单,总金额是多少,假设N取90天,汇总值仅取成交单数. A表的字段有:buyer_id.seller_id.pay_cnt_90day. B表为卖家基本信…
4.大表join小表优化 和join相关的优化主要分为mapjoin可以解决的优化(即大表join小表)和mapjoin无法解决的优化(即大表join大表),前者相对容易解决,后者较难,比较麻烦. 首先介绍大表join小表优化.以销售明细表为例来说明大表join小表的场景. 假如供应商进行评级,比如(五星.四星.三星.二星.一星),此时因为人员希望能够分析各供应商星级的每天销售情况及其占比. 开发人员一般会写出如下SQL: select  seller_star, count(order_id)…
Hive优化-大表join大表优化 5.大表join大表优化 如果Hive优化实战2中mapjoin中小表dim_seller很大呢?比如超过了1GB大小?这种就是大表join大表的问题.首先引入一个具体的问题场景,然后基于此介绍各自优化方案. 5.1.问题场景 问题场景如下: A表为一个汇总表,汇总的是卖家买家最近N天交易汇总信息,即对于每个卖家最近N天,其每个买家共成交了多少单,总金额是多少,假设N取90天,汇总值仅取成交单数. A表的字段有:buyer_id.seller_id.pay_c…
[使用场景] 两个RDD进行join的时候,如果数据量都比较大,那么此时可以sample看下两个RDD中的key分布情况.如果出现数据倾斜,是因为其中某一个RDD中的少数几个key的数据量过大,而另一个RDD中的所有key都分布比较均匀,此时可以考虑采用本解决方案. [解决方案] 对有数据倾斜那个RDD,使用sample算子采样出一份样本,统计下每个key的数量,看看导致数据倾斜数据量最大的是哪几个key. 然后将这几个key对应的数据从原来的RDD中拆分出来,形成一个单独的RDD,并给每个ke…
[使用场景] 对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(例如几百MB或者1~2GB),比较适用此方案. [解决方案] 小表join大表转为小表broadcast+map大表实现.具体为: 普通的join是会shuffle的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join,此时如果发生数据倾斜,影响处理性能,而此时恰好一…
1.小.大表 join 在小表和大表进行join时,将小表放在前边,效率会高.hive会将小表进行缓存. 2.mapjoin 使用mapjoin将小表放入内存,在map端和大表逐一匹配.从而省去reduce. 样例: select /*+MAPJOIN(b)*/ a.a1,a.a2,b.b2 from tablea a JOIN tableb b ON a.a1=b.b1 在0.7版本号后.也能够用配置来自己主动优化 set hive.auto.convert.join=true;…
1. 概述 在传统数据库(如:MYSQL)中,JOIN操作是非常常见且非常耗时的.而在HADOOP中进行JOIN操作,同样常见且耗时,由于Hadoop的独特设计思想,当进行JOIN操作时,有一些特殊的技巧. 本文首先介绍了Hadoop上通常的JOIN实现方法,然后给出了几种针对不同输入数据集的优化方法. 2. 常见的join方法介绍 假设要进行join的数据分别来自File1和File2. 2.1 reduce side join reduce side join是一种最简单的join方式,其主…
转自:http://my.oschina.net/leejun2005/blog/95186 MapSideJoin例子:http://my.oschina.net/leejun2005/blog/111963 1. 概述 在传统数据库(如:MYSQL)中,JOIN操作是非常常见且非常耗时的.而在HADOOP中进行JOIN操作,同样常见且耗时,由于Hadoop的独特设计思想,当进行JOIN操作时,有一些特殊的技巧. 本文首先介绍了Hadoop上通常的JOIN实现方法,然后给出了几种针对不同输入数…
在上一篇文章中,我和你介绍了 join 语句的两种算法,分别是 Index Nested-Loop Join(NLJ) 和 Block Nested-Loop Join(BNL). 我们发现在使用 NLJ 算法的时候,其实效果还是不错的,比通过应用层拆分成多个语句然后再拼接查询结果更方便,而且性能也不会差. 但是,BNL 算法在大表 join 的时候性能就差多了,比较次数等于两个表参与 join 的行数的乘积,很消耗 CPU 资源. 当然了,这两个算法都还有继续优化的空间,我们今天就来聊聊这个话…