基于sklearn进行文本向量化】的更多相关文章

sklearn中,计数向量化用CountVectorizer,tfidf向量化用TfidfVectorizer: import pickle from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer def test(vectorizer, word_bag, test_data): test_matrix = vectorizer.transform(test_data) print(test_ma…
1.载入文档 #!/usr/bin/python # -*- coding: utf-8 -*- import pandas as pd import re import jieba from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer #加载文本 dataPath1='D:/machinelearning data/crawlerData/mi6x_JD500.csv' dataPath2='…
目录 介绍 基于SVM对MINIST数据集进行分类 使用SVM SVM分析垃圾邮件 加载数据集 分词 构建词云 构建数据集 进行训练 交叉验证 炼丹术 总结 参考 介绍 在上一篇博客:数据挖掘入门系列教程(八点五)之SVM介绍以及从零开始公式推导中,详细的讲述了SVM的原理,并进行了详细的数学推导.在这篇博客中,主要是应用SVM,使用SVM进行数据分类,不会涉及到SVM的解释,so,如果对svm并不是特别了解的话,非常建议先去看我的上一篇博客(or其他博主的博客),然后再来看这一篇博客.因为在这…
利用sklearn计算文本相似性,并将文本之间的相似度矩阵保存到文件当中.这里提取文本TF-IDF特征值进行文本的相似性计算. #!/usr/bin/python # -*- coding: utf-8 -*- import numpy import os import sys from sklearn import feature_extraction from sklearn.feature_extraction.text import TfidfTransformer from sklea…
在文本聚类之前,首先要做的是文本的向量化.该过程涉及到分词,特征抽取,权重计算等等.Mahout 提供了文本向量化工具.由于Mahout 向量化算法要处理的文件是Hadoop SequenceFile ,需要将普通的文本文件转成SequenceFile格式,然后在向量化. 一.序列化 API SequenceFilesFromDirectory.main(args); --input (-i) 文件存放路径 -output (-o) 输出文件路径 --overwrite (-ow) 是否清空输出…
tensorflow实现基于LSTM的文本分类方法 作者:u010223750 引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实例,这个星期就用tensorflow实现了一下,感觉和之前使用的theano还是有很大的区别,有必要总结mark一下 模型说明 这个分类的模型其实也是很简单,主要就是一个单层的LSTM模型,当然也可以实现多层的模型,多层的模型使用Tensorflow尤其简单,下面是这个模型的图  简单解释一下这个图…
雷锋网按:本文作者陆池,原文载于作者个人博客,雷锋网已获授权. 引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实例,这个星期就用tensorflow实现了一下,感觉和之前使用的theano还是有很大的区别,有必要总结mark一下. 模型说明 这个分类的模型其实也是很简单,主要就是一个单层的LSTM模型,当然也可以实现多层的模型,多层的模型使用Tensorflow尤其简单,下面是这个模型的图 简单解释一下这个图,每个word经…
转载自:https://www.ibm.com/developerworks/cn/cognitive/library/cc-1606-spark-seniment-analysis/index.html IBM 公司在 2015 年对外宣告了一个新的科技和商务时代的来临—认知时代.这个巨大的转变,来自 IBM 对技术和商业领域的三个重要的洞察力[1].第一,这个世界被数据所充斥.第二,这个世界通过代码被改造.第三,认知计算的出现.其中,认知计算可以: 通过感知与互动,理解非结构化数据 通过生成…
酒店评论情感分析系统(四)—— 基于LingPipe的文本基本极性分析[demo] (Positive (favorable) vs. Negative (unfavorable)) 这篇文章为LingPipe官方网站对于Sentiment Ananlysis的学习所给出学习材料: http://alias-i.com/lingpipe/demos/tutorial/sentiment/read-me.html 官方网站中的学习材料是通过使用逻辑回归分类器基于一定的语言模型对电影评论赋予一定的情…
分词(Tokenization) - NLP学习(1) N-grams模型.停顿词(stopwords)和标准化处理 - NLP学习(2)   之前我们都了解了如何对文本进行处理:(1)如用NLTK文本处理库将文本的句子成分分成了N-Gram模型,与此同时引入了正则表达式去除一些多余的句子成分:(2)将停顿词去除:(3)一些通用的标准化处理,如大小写.提取词干等.在这一节我们将看看如何对文本中的单词进行统计,并以此来查看一个单词在特定文档中或者整个文本集中的重要性.统计单词的任务是为了给特定的词…