【BZOJ】1441 Min(数学)】的更多相关文章

BZOJ 1441:Min Description 给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小 Input 第一行给出数字N,代表有N个数 下面一行给出N个数 Output S的最小值 Sample Input 24059 -1782 Sample Output 99 HINT   Source 分析:相当于拓展欧几里得的n次推广. 代码: #include"bits/stdc++.h" #define d…
题目: 给出\(n\)个数\((A_1, ... ,A_n)\)现求一组整数序列\((X_1, ... X_n)\)使得\(S=A_1*X_1+ ...+ A_n*X_n > 0\),且\(S\)的值最小 题解: 貌似这是什么裴蜀定理... 总之多试几个样例就会发现答案是所有数的gcd #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef lon…
题意:给一堆数ai,求S=Σxiai,使得S最小且为正整数 根据裴蜀定理,一定存在ax+by=gcd(a,b),同理可以推广到n个整数 也就是说,在不考虑正负的情况下,所有数的gcd就是所求 #include<iostream> #include<cstdio> using namespace std; typedef long long ll; inline ll rd(){ ll ret=;char c; while(c=getchar(),!isdigit(c)); +c-'…
根据 $exgcd$ 的定理,这种方程的最小解就是 $gcd$. Code: #include <cstdio> #include <algorithm> using namespace std; int main() { int n,i,a,ans; scanf("%d%d",&n,&ans); for(i=2;i<=n;++i) scanf("%d",&a),ans=__gcd(a,ans); printf(…
1441: Min Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 467  Solved: 312[Submit][Status][Discuss] Description 给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小 Input 第一行给出数字N,代表有N个数 下面一行给出N个数 Output S的最小值 Sample Input 2 4059 -1782 Sample Out…
1441: Min Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 320  Solved: 213[Submit][Status][Discuss] Description 给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小 Input 第一行给出数字N,代表有N个数 下面一行给出N个数 Output S的最小值 Sample Input 2 4059 -1782 Sample Out…
题目 传送门:QWQ 分析 裴蜀定理. 因为存在 $ a_1 $ $ a_2 $...... $ a_n $的最大公约数为 $ d $,那么必定存在 $ x_1*a_1+x_2*a_2+...x_n*a_n=d $ 然后就A了. 代码 /************************************************************** Problem: 1441 User: noble_ Language: C++ Result: Accepted Time:4 ms…
http://www.lydsy.com/JudgeOnline/problem.php?id=1441 这东西竟然还有个名词叫裴蜀定理................ 裸题不说....<初等数论>上边写得很清楚:如果对于任意d|ai,有d|sum{aixi} 所以求出d就行了...显然gcd.. ls纯属我中二.... 裴蜀定理是:存在$d=(a_1, a_2, \cdots, a_n)$使得$\sum_{i=1}^{n} a_ix_i$.... 而我上边说的压根就没表示出来........…
题目描述 给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小 输入 第一行给出数字N,代表有N个数 下面一行给出N个数 输出 S的最小值 样例输入 2 4059 -1782 样例输出 99 /* (裴蜀定理:ax+by的最小正整数值为gcd(a,b)) 首先,将题意简化,设n=2,那么,就是求a1*x1+a2*x2=S的最小正整数值. 根据扩展欧几里得可以知道当gcd(a1,a2)|S时,gcd为最小正整数解. 拓展题意,就是a1…
BZOJ先剧透了是矩阵乘法...这道题显然可以f(x) = f(x-1)*10t+x ,其中t表示x有多少位. 这个递推式可以变成这样的矩阵...(不会用公式编辑器...), 我们把位数相同的一起处理, 那么10^t就可以确定,加上快速幂就行了 ------------------------------------------------------------------------------------ #include<cstdio> #include<cstring>…
题目链接:BZOJ - 2326 题目分析 数据范围达到了 10^18 ,显然需要矩阵乘法了! 可以发现,向数字尾部添加一个数字 x 的过程就是 Num = Num * 10^k + x .其中 k 是 x 的位数. 那么位数相同的数字用矩阵乘法处理就可以了. [Num, x, 1] * [10^k, 0, 0] = [Num*10^k+x, x+1, 1] [      1, 0, 0] [      0, 1, 1] 枚举位数,做多次矩阵乘法. 其中两个整数相乘可能会爆 LL ,那么就用类似…
#include<cstdio> #include<iostream> #include<cstring> #include<cmath> #define ll long long ll b[],x[][],y[][],n,a[],ans,ans1,m; ][],ll q1[][]) { ll q2[][]; memset(q2,,sizeof(q2)); ;i<;i++) ;j<;j++) ;k<;k++) q2[i][j]=(q2[i]…
Description Input 输入文件的第一行输入两个正整数 . Output 如题 Sample Input 5 6 Sample Output 240 HINT N,M<=10^15 题解: 之前做的,今天突然留了,想起了就补上. 首先对于 m%k+n%k>=k 那么设m=a1*k+b1,n=a2*k+b2;  m%k+n%k>=k ===> (a1+a2)*k+b1+b2>=(a1+a2+1)*k   即 (a1*k+b1)+(a2*k+b2)>=(a1+a…
线段树裸题 难度在于认识到这个没法线性做 #include<cstdio> using namespace std; int n,mod,tr[400005]; void insert(int t,int l,int r,int x,int y){ if (l==r){ tr[t]=y; return; } int mid=(l+r)>>1; if (x<=mid) insert(t<<1,l,mid,x,y); else insert(t<<1|1,…
矩阵乘法一般不满足交换律!!所以快速幂里需要注意乘的顺序!! 其实不难,设f[i]为i的答案,那么f[i]=(f[i-1]w[i]+i)%mod,w[i]是1e(i的位数),这个很容易写成矩阵的形式,然后按每一位分别矩阵快速幂即可 矩阵: f[i-1] w[i] 1 1 f[i] i-1 0 1 1 = i 1 0 0 1 1 #include<iostream> #include<cstdio> using namespace std; long long n,mod,t; lo…
思路: 若a,b是整数,且(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立. 它的一个重要推论是:a,b互质的充要条件是存在整数x,y使ax+by=1. 设a1,a2,a3......an为n个整数,d是它们的最大公约数,那么存在整数x1......xn使得x1*a1+x2*a2+...xn*an=d. 特别来说,如果a1...an互质(不是两两互质),那么存在整数x1......xn使得x1*a1+x2*a2+...xn*a…
传送门 解题思路 NOIp前看到的一道题,当时想了很久没想出来,NOIp后拿出来看竟然想出来了.注意到有递推\(f[i]=f[i-1]*poww[i]+i\),\(f[i]\)表示\(1-i\)连接起来组成的数字,\(poww[i]\)表示\(10\)的\(i\)的位数次幂,发现这个可以用矩阵快速幂优化,\([f[i],i+1,1]\),转移到\([f[i+1],i+2,1]\),要做\(n\)的位数次快速幂,每次修改一下转移矩阵中\(poww\)的值就行了. 代码 #include<iostr…
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem 10983 18765 Y 1036 [ZJOI2008]树的统计Count 5293 13132 Y 1588 [HNOI2002]营业额统计 5056 13607 1001 [BeiJing2006]狼抓兔子 4526 18386 Y 2002 [Hnoi2010]Bounce 弹飞绵羊 43…
1441: Min Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 471  Solved: 314[Submit][Status][Discuss] Description 给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小 Input 第一行给出数字N,代表有N个数下面一行给出N个数 Output S的最小值 Sample Input 24059 -1782 Sample Outpu…
我们知道html在h5出之前就仅仅只是一个标签,一个标记,语义化并不强,后来新增的标签如video,audio都是语义化更强(让人一看就懂是什么东西,反正我是这么理解的,一个div不代表着什么),本身自带功能的标签(这个功能别问我怎么弄出来的,是浏览器自身内核渲染出来的),就一句话,这个标签就有这样的功能,当然需要定制化外观或功能也可以自己写.而画布其实也一样.简单的理解就是一张布,一张一尘不染的布,等待各位奋笔挥毫. 画布很简单就是一个标签<canvas></canvas>; 一…
汇总函数:Count.Sum.AVG.MAX.min; 数学函数: ABS:绝对值.floor:给出比给定值小的最大整数. round(m,n):m为给定的值,n为小数点后保留的位数. power(m,n):指数函数,m为底,n为幂: 字符函数: char:返回ascII码中给定值对应的字符. Lower.upper.Ltrim.Rtrim. replace(m,n,r):m是给定的字符串,n是待替换的字符串,r是替换的字符串. substig(m,n,r):m是给定的字符串,n给定截取字符串的…
http://www.lydsy.com/JudgeOnline/problem.php?id=2321 完全想不到.. 第一眼以为是爆搜,看到数据范围果断放弃:第二眼以为是网络流(因为只有行列操作,我们将起点向重点连边然后设置容量等等麻烦的东西再跑最大流),觉得建模麻烦放弃 数学... 首先本题有个性质: 答案与移动方法无关(因为有行列限制并且是2个同时在同行同列移动,这样,只要这行这列有个点是终点,无论是怎么累计起来的,能到达的点到这里的距离和相等) 这样就使得我们可以绕开答案. 我们来看矩…
http://www.lydsy.com/JudgeOnline/problem.php?id=1061 好神的一题! 学会了一种建模方式: 当方程组内的任意变量都在其中两个方程出现且一正一负,可以建立网络模型(按方程的数目为节点),原理就是流量守恒,其中方程的常数可以就是限制方程成立的容量(即最大流可以满足方程),按符号向源和汇连边即可. orz 具体的详细数学建模看blog:https://www.byvoid.com/zhs/blog/noi-2008-employee/ 然后建图就是:…
bzoj 5334 数学计算 开始想直接模拟过程做,但模数 \(M\) 不一定为质数,若没有逆元就 \(fAKe\) 掉了. 注意到操作 \(2\) 是删除对应的操作 \(1\) ,相当于只有 \(1\) 操作,但每个操作有一个生效的时限. 将所有操作离线下来,用一颗线段树维护每个时间的答案.对于操作 \(1\) ,预处理出生效的时限后,区间修改那一段即可.注意有没有删除的情况,右端点设为 \(Q\) . 预处理结束后,对每个操作可以一边改一边做,后面的操作显然不会对这里的答案造成影响. 时间复…
pandas-12 数学计算操作df.sum().df.min().df.max().df.decribe() 常用的数学计算无非就是加减,最大值最小值,方差等等,pandas已经内置了很多方法来解决这些问题.如:df.sum().df.min().df.max().df.decribe()等. import numpy as np import pandas as pd from pandas import Series, DataFrame s1 = Series([1, 2, 3], in…
[bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Input 6 Sample Output 15 HINT [数据范围] 对于60%的数据,0<N<=2^16. 对于100%的数据,0<N<…
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋值,所以问题就是如何求每条边的期望. 直接求没办法求的,可以先求出每个点经过的期望. 易得f[i]=∑f[j]/d[j] j->i有边 特殊的,对于起点,因为刚开始就在,所以应该是f[1]=1+∑f[j]/d[j]:对于终点,到了终点后不能再到其他节点,所以对其他边并没有贡献,所以f[n]=0 然后…
http://www.lydsy.com/JudgeOnline/problem.php?id=1076 有时候人蠢还真是蠢.一开始我看不懂期望啊..白书上其实讲得很详细的,什么全概率,全期望(这个压根没说). 还是看了论文才知道全期望这个东西.. 意思很明白,就是说Y的期望等于 所有 可能的情况的期望值乘上得到这个期望值的概率 的和. 很难懂吗...慢慢想. 首先你得知道期望是 之中某个事件的概率×这个事件的贡献 之和. 而且这些事件相互独立. 那么这里求全期望也就是 “这个事件的贡献” 那里…
首先对于答案 ΣΣ(n mod i)*(m mod j) i<>j 也就是Σ(n mod i)Σ(m mod j)-Σ(n mod i)(m mod i) 将mod展开,我们可以得到有floor的式子,对于这种式子,我们可以 利用分段的思想,将O(N)的简化为sqrt(n)的 /************************************************************** Problem: User: BLADEVIL Language: Pascal Resul…
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2326 题意:定义Concatenate(1,N)=1234567……n.比如Concatenate(1,10)=12345678910.给定n和m,求Concatenate(1,n)%m. 思路:令f[n]表示Concatenate(1,n).那么有: f[i]=f[i-1]*10+(i-1)+1   1<=i<=9 f[i]=f[i-1]*100+(i-1)+1  10<=i…