机器学习技法笔记:13 Deep Learning】的更多相关文章

Roadmap Deep Neural Network Autoencoder Denoising Autoencoder Principal Component Analysis Summary…
从这一节开始学习机器学习技法课程中的SVM, 这一节主要介绍标准形式的SVM: Linear SVM 引入SVM 首先回顾Percentron Learning Algrithm(感知器算法PLA)是如何分类的,如下图,找到一条线,将两类训练数据点分开即可: PLA的最后的直线可能有很多条,那到底哪条好呢?好坏的标准则是其泛化性能,即在测试数据集上的正确率,如下,下面三条直线都能正确的分开训练数据,那到底哪个好呢?SVM就是解决这个问题的. SVM求解 直觉告诉我们最右的要好一些,因为测试数据的…
这节课是最后一节,讲的是做机器学习的三个原则. 第一个是Occan's razor,即越简单越好.接着解释了什么是简单的hypothesis,什么是简单的model.关于为什么越简单越好,林老师从大致思想 上进行了解释:如果一个简单的模型能对数据分得很好,那说明输入的资料是有规律的资料(这被称为资料具有显著性significant):对于复杂的模型来说,不是资料怎么样,都可以分的较好,这样 的资料不具备显著性.那做机器学习的方向就是,先做简单的线性模型,不行再做其他的. 第二个是sampling…
http://blog.csdn.net/dinosoft/article/details/50103503 推荐一个deep learning绝佳的入门资料 * UFLDL(Unsupervised Feature Learning and Deep Learning)教程 http://deeplearning.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B 故意把链接地址也写出来,方便看到来源,嘿嘿. 资料写得相当赞,还有中文版.看懂…
中文译文:深度学习.自然语言处理和表征方法 http://blog.jobbole.com/77709/ 英文原文:Deep Learning, NLP, and Representations http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/ 总结: 这篇文章中主要提到了单层神经网络,单词嵌入(word embeddings),表征这几个概念,结合具体的实例,写的是通俗易懂,在引用参考文献的位置都给出了对应的链接,一些…
Roadmap Deep Neural Network Autoencoder Denoising Autoencoder Principal Component Analysis Summary…
机器学习分为四步: When Can Machine Learn? Why Can Machine Learn? How Can Machine Learn? How Can Machine Learn Better? 一.What is Machine Learning Q:什么是“学习”? A:学习就是人类通过观察.积累经验,掌握某项技能或能力.就好像我们从小学习识别字母.认识汉字,就是学习的过程. 机器学习(Machine Learning),顾名思义,就是让机器(计算机)也能向人类一样,…
原文地址:https://www.jianshu.com/p/ed0aee74523f 一.Perceptron Learning Algorithm (一)算法原理 PLA本质是二元线性分类算法,即用一条线/一个面/一个超平面将1.2维/3维/4维及以上数据集根据标签的不同一分为二.算法确定后,根据\(W\)取值的不同形成不同的\(h\),构成假设集合\(H\).如2维感知器算法,根据\(w_0\),\(w_1\),\(w_2\)的不同取值,构成了不同的\(h\),这些\(h\)最终构成\(H…
Roadmap Feature Exploitation Techniques Error Optimization Techniques Overfitting Elimination Techniques Machine Learning in Practice Summary…
Roadmap Motivation Neural Network Hypothesis Neural Network Learning Optimization and Regularization Summary…