CF1039D You Are Given a Tree LG传送门 根号分治好题. 这题可以整体二分,但我太菜了,不会. 根号分治怎么考虑呢?先想想\(n^2\)暴力吧.对于每一个要求的\(k\),一遍dfs直接贪心,能拼成链就直接拼,正确性不用我证明吧. 考虑对于\(k \le \sqrt n\),直接按照暴力去做,复杂度\(O(n \sqrt n)\):对于\(k\)从\(\sqrt n+1\)到\(n\)的所有情况,我们发现答案只会在\(\sqrt n\)到\(0\)之间取值(\(k>…
传送门 似乎直接做不太好做-- 当你不会做的时候就可以考虑根号算法了(或许是这样的 考虑如果只有一个询问如何计算答案. 显然是可以贪心的,思路与NOIP2018D1T3是相同的.每一个点向上传一条链,对于某一个点,如果从儿子传上来的所有链中最长的两条的长度之和\(\geq k\)就连上,否则就把其中最长的那一条传上去. 然后考虑所有询问. 可以发现:对于链长\(>\sqrt{n}\)的所有询问,最多只有\(\sqrt{n}\)种答案. 所以对于链长\(\leq \sqrt{n}\)的询问暴力计算…
洛谷 Codeforces 根号分治真是妙啊. 思路 考虑对于单独的一个\(k\)如何计算答案. 与"赛道修建"非常相似,但那题要求边,这题要求点,所以更加简单. 在每一个点贪心地把子树升上来的两条最长的链拼在一起,能组就组,否则把最长链往上送,复杂度\(O(n)\). 那么多个\(k\)怎么办呢? 分析一波,\(k<\sqrt{n}\)时可以暴力计算,而\(k>\sqrt{n}\)时\(ans_k\leq \lfloor \frac{n}{k}\rfloor\),只有\(…
题意 给你\(n\)个点的树,其中一个简单路径的集合被称为\(k\)合法当且仅当树的每个节点最多属于一条路径,且每条路径包含\(k\)个节点.对于每个\(k(k \in [1,n])\),输出最多的\(k\)合法路径. \(n\leq 10^5\). 分析 先考虑 \(n^2\) 的做法,每次可以贪心地合并链,正确性显然. 考虑根号分治,\(k<\sqrt n\) 时 \(O(n)\) 暴力,否则因为取值是单调的可以二分,取值不超过 \(\frac{n}{\sqrt n}=\sqrt n\) 个…
LINK:Expected diameter of a tree 1e5 带根号log 竟然能跑过! 容易想到每次连接两个联通快 快速求出直径 其实是 \(max(D1,D2,f_x+f_y+1)\) 其中\(D1,D2\)分别为两个联通块内的直径. \(f_x\)表示 从x出发的最长链. 这样容易想到 枚举一个块的点 然后其实要找到 \(C=max(D1,D2)\) 第一个位置满足\(>C-f_x-1\) 然后就能统计答案了. 排序后扫描 复杂度要高 不如排序后二分. 然后加一个记忆化就过了.…
正题 题目链接:https://www.luogu.com.cn/problem/CF1039D 题目大意 给出\(n\)个点的一棵树,然后对于\(k\in[1,n]\)求每次使用一条长度为\(k\)的链覆盖树并且不能重复覆盖点时最大覆盖条数. \(1\leq n\leq 10^5\) 解题思路 先考虑暴力怎么做,因为每条链的价值都是一,显然的一种贪心思想是能合并的就合并(没有让出一条链给另一条链腾空间的必要). 这样的复杂度是\(O(n)\)的,但是对于每个都要求所以需要优化. 之后考虑上根号…
xor There is a tree with nn nodes. For each node, there is an integer value a_ia​i​​, (1 \le a_i \le 1,000,000,0001≤a​i​​≤1,000,000,000 for 1 \le i \le n1≤i≤n). There is qq queries which are described as follow: Assume the value on the path from node…
BZOJ \(\mathbb{mod}\)一个数\(y\)的最小值,可以考虑枚举剩余系,也就是枚举区间\([0,y),[y,2y),[2y,3y)...\)中的最小值(求后缀最小值也一样)更新答案,复杂度是\(O(\frac ny)\)的.注意到\(y>\sqrt n\)时,枚举次数\(<\sqrt n\). 我们可以对\(y\)根号分治,设\(m=\sqrt{V}\)(\(V\)是值域). 当\(y\leq m\)时,可以维护一个大小为\(m\)的桶\(s_i\)(表示模数为\(i\)时的\…
[CF1039D]You Are Given a Tree 题目大意: 给定一棵\(n(n\le10^5)\)个节点的树.对于每一个正整数\(k(1\le k\le n)\),求最多能找出多少条包含\(k\)个点的路径,使得这些路径没有公共点. 思路: 答案只可能有大约\(2\sqrt n\)种,对于每一种答案二分其对应的\(k\)的范围,每次自底向上贪心地选择路径.卡卡常就可以过了. 时间复杂度\(\mathcal O(n\sqrt n\log n)\). 源代码: #include<cmat…
传送门 感谢这一篇博客的指导(Orzwxh) $PS$:默认数组下标为$1$到$N$ 首先很明显的贪心:每一次都选择尽可能长的区间 不妨设$d_i$表示在取当前$K$的情况下,左端点为$i$的所有满足条件的区间中最大的右端点$+1$,然后连边$(i,d_i)$ 那么我们就需要求一条链的长度,并支持动态修改某一些边 是不是有些印象?与弹飞绵羊极为相似,没有做过的可以先去感受一下…… 上面那道题有两种做法:$LCT$与分块,所以这一道题就衍生出了$O(n\sqrt{n}logn)$的基于$LCT$的…