前面分析了memblock算法.内核页表的建立.内存管理框架的构建,这些都是x86处理的setup_arch()函数里面初始化的,因地制宜,具有明显处理器的特征.而start_kernel()接下来的初始化则是linux通用的内存管理算法框架了. build_all_zonelists()用来初始化内存分配器使用的存储节点中的管理区链表,是为内存管理算法(伙伴管理算法)做准备工作的.具体实现: [file:/mm/page_alloc.c] /* * Called with zonelists_…
此处承接前面未深入分析的页面释放部分,主要详细分析伙伴管理算法中页面释放的实现.页面释放的函数入口是__free_page(),其实则是一个宏定义. 具体实现: [file:/include/linux/gfp.h] #define __free_page(page) __free_pages((page), 0) 而__free_pages()的实现: [file:/mm/page_alloc.c] void __free_pages(struct page *page, unsigned i…
前面已经分析了linux内存管理算法(伙伴管理算法)的准备工作. 具体的算法初始化则回到start_kernel()函数接着往下走,下一个函数是mm_init(): [file:/init/main.c] /* * Set up kernel memory allocators */ static void __init mm_init(void) { /* * page_cgroup requires contiguous pages, * bigger than MAX_ORDER unle…
前面分析了伙伴管理算法的初始化,在切入分析代码实现之前,例行先分析一下其实现原理. 伙伴管理算法(也称之为Buddy算法),该算法将所有空闲的页面分组划分为MAX_ORDER个页面块链表进行管理,其中MAX_ORDER定义: [file:/include/linux/mmzone.h] #ifndef CONFIG_FORCE_MAX_ZONEORDER #define MAX_ORDER 11 #else #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER…
传统的计算机结构中,整个物理内存都是一条线上的,CPU访问整个内存空间所需要的时间都是相同的.这种内存结构被称之为UMA(Uniform Memory Architecture,一致存储结构).但是随着计算机的发展,一些新型的服务器结构中,尤其是多CPU的情况下,物理内存空间的访问就难以控制所需的时间相同了.在多CPU的环境下,系统只有一条总线,有多个CPU都链接到上面,而且每个CPU都有自己本地的物理内存空间,但是也可以通过总线去访问别的CPU物理内存空间,同时也存在着一些多CPU都可以共同访…
memory:表示可用可分配的内存: 结束完memblock算法初始化前的准备工作,回到memblock算法初始化及其算法实现上面.memblock是一个很简单的算法. memblock算法的实现是,它将所有状态都保存在一个全局变量__initdata_memblock中,算法的初始化以及内存的申请释放都是在将内存块的状态做变更.那么从数据结构入手, __initdata_memblock是一个memblock结构体.其结构体定义: [file:/include/linux/memblock.h…
本文转载自:http://blog.chinaunix.net/uid-26859697-id-5573776.html kmalloc()是基于slab/slob/slub分配分配算法上实现的,不少地方将其作为slab/slob/slub分配算法的入口,实际上是略有区别的. 现在分析一下其实现: [file:/include/linux/slab.h] /** * kmalloc - allocate memory * @size: how many bytes of memory are r…
前面已经分析了内存管理框架的构建实现过程,有部分内容未完全呈现出来,这里主要做个补充. 如下图,这是前面已经看到过的linux物理内存管理框架的层次关系. 现着重分析一下各个管理结构体的成员功能作用. [file:/include/linux/mmzone.h] typedef struct pglist_data { struct zone node_zones[MAX_NR_ZONES]; struct zonelist node_zonelists[MAX_ZONELISTS]; int…
前面已经分析过了Intel的内存映射和linux的基本使用情况,已知head_32.S仅是建立临时页表,内核还是要建立内核页表,做到全面映射的.下面就基于RAM大于896MB,而小于4GB ,切CONFIG_HIGHMEM配置了高端内存的环境情况进行分析. 建立内核页表前奏,了解两个很关键的变量: max_pfn:最大物理内存页面帧号: max_low_pfn:低端内存区(直接映射空间区的内存)的最大可用页帧号: max_pfn 的值来自setup_arch()中,setup_arch()函数中…
memblock算法是linux内核初始化阶段的一个内存分配器(它取代了原来的bootmem算法),实现较为简单.负责page allocator初始化之前的内存管理和分配请求. 分析memblock算法,可以从几点入手: memblock算法初始化: memblock算法管理内存的申请和释放: memblock算法前的准备: 前面已经分析了linux系统在初始化的过程中,使用int 15中断探知了机器的内存分布图(e820图),其数据是存储在boot_params.e820_map里面,这里面…