SparkStreaming 整合kafka Demo】的更多相关文章

这里使用的是低级API,因为高级API非常不好用,需要繁琐的配置,也不够自动化,却和低级API的效果一样,所以这里以低级API做演示 你得有zookeeper和kafka 我这里是3台节点主机 架构图 与高级API的区别,简单并行(不需要创造多个输入流,它会自动并行读取kafka的数据),高效(不会像receiver数据被copy两次),一次性语义(缺点:无法使用zookeeper的监控工具) 1.创建maven工程 首先添加pom依赖,其它运行依赖请参考 sparkStreaming整合Wor…
一.下载依赖jar包 具体可以参考:SparkStreaming整合kafka编程 二.创建Java工程 太简单,略. 三.实际例子 spark的安装包里面有好多例子,具体路径:spark-2.1.1-bin-hadoop2.7\examples. JavaDirectKafkaWordCount.java package com.spark.test; import java.util.HashMap; import java.util.HashSet; import java.util.Ar…
1. Spark Streaming 1.1 简介(来源:spark官网介绍) Spark Streaming是Spark Core API的扩展,其是支持可伸缩.高吞吐量.容错的实时数据流处理.Spark Streaming的数据源可以为kafka,Flume,Kinesis或者是TCP socket,并且这些数据可以使用复杂的算法来处理,这些算法用高级函数表示,如map.reduce.join和window.最后被处理的数据可以被push到文件存储系统,数据库,live dashboards…
1.下载spark-streaming-kafka插件包 由于Linux集群环境我使用spark是spark-2.1.1-bin-hadoop2.7,kafka是kafka_2.11-0.8.2.1,所以我下载的是spark-streaming-kafka-0-8_2.11-2.1.1.jar. 官网下载地址:http://mvnrepository.com/artifact/org.apache.spark/spark-streaming-kafka-0-8_2.11/2.1.1 百度云下载地…
Maven组件如下: ) { System.err.println() } StreamingExamples.setStreamingLogLevels() )) ) { System.) } )) val topicsSet=topics.split(",").toSet val kafkaParams=mutable.HashMap[String,String]() //必须添加以下参数,否则会报错 kafkaParams.put("bootstrap.servers&…
1.安装并配置zk 2.安装并配置Kafka 3.启动zk 4.启动Kafka 5.创建topic [root@mini3 kafka]# bin/kafka-console-producer. --topic cyf-test 程序代码 package org.apache.spark import java.net.InetSocketAddress import org.apache.spark.HashPartitioner import org.apache.spark.SparkCo…
Kafka0.8版本基于receiver接受器去接受kafka topic中的数据(并演示reduceByKeyAndWindow的使用) 依赖 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka-0-8_2.11</artifactId> <version>2.1.3</version> </depen…
文章目录 Streaming和Kafka整合 概述 使用0.8版本下Receiver DStream接收数据进行消费 步骤 一.启动Kafka集群 二.创建maven工程,导入jar包 三.创建一个kafka的topic 四.启动kafka的Producer 五.开发代码 使用0.8版本下Direct DStream接收数据进行消费 开发代码 使用0.10版本下Direct DStream接收数据进行消费 注意事项 步骤 一.添加jar包 二.开发代码 Streaming和Kafka整合 概述…
前言 老刘是一名即将找工作的研二学生,写博客一方面是复习总结大数据开发的知识点,一方面是希望帮助更多自学的小伙伴.由于老刘是自学大数据开发,肯定会存在一些不足,还希望大家能够批评指正,让我们一起进步! 今天讲述的是SparkStreaming与Kafka的整合,这篇文章非常适合刚入门的小伙伴,也欢迎大家前来发表意见,老刘这次会用图片的形式讲述别人技术博客没有的一些细节,这些细节对刚入门的小伙伴是非常有用的!!! 正文 为什么有SparkStreaming与Kafka的整合? 首先我们要知道为什么…
在之前的文章<解析SparkStreaming和Kafka集成的两种方式>中已详细介绍SparkStreaming和Kafka集成主要有Receiver based Approach和Direct Approach.同时对比了二者的优劣势,以及针对不同的Spark.Kafka集成版本处理方式的支持: 本文主要介绍,SparkStreaming和Kafka使用Direct Approach方式处理任务时,如何自己管理offset? SparkStreaming通过Direct Approach接…