Pytorch 记录】的更多相关文章

先看看简单例子: import torch import torch.autograd as autograd import torch.nn as nn import torch.nn.functional as F import torch.optim as optim torch.manual_seed(1) 1 2 3 4 5 6 7 用torch.tensor让list成为tensor: # Create a 3D tensor of size 2x2x2. T_data = [[[1…
BCELoss BCEWithLogitsLoss 将sigmoid和BCELoss结合在一起,数据的稳定性更好. torch.nn.functional: binary_cross_entropy_with_logits: 同BCEWithLogitsLoss…
torch.nn 的本质 PyTorch 提供了各种优雅设计的 modules 和类 torch.nn,torch.optim,Dataset 和 DataLoader 来帮助你创建并训练神经网络.为了充分利用它们的力量并且根据你的问题定制它们,你需要真正地准确了解它们在做什么.为了建立这种理解,我们首先从这些模型(models)上不使用任何特性(features)在 MNIST 数据集上训练一个基本的神经网络:我们将从最基本的 PyTorch Tensor 功能开始.然后,我们每次在 torc…
该教程是在notebook上运行的,而不是脚本,下载notebook文件. PyTorch提供了设计优雅的模块和类:torch.nn, torch.optim, Dataset, DataLoader,以创建和训练神经完了过.为了充分利用其功能,并根据问题进行自定义,需要充分理解它们做的是什么.为了提高认知,我们首先在MNIST上训练一个基础的神经网络,而不使用这些模块的任何特性:仅使用最基础的PyTorch tensor函数初始化.然后,一次添加一个来自torch.nn, torch.opti…
生产与学术 写于 2019-01-08 的旧文, 当时是针对一个比赛的探索. 觉得可能对其他人有用, 就放出来分享一下 生产与学术, 真实的对立... 这是我这两天对pytorch深度学习->android实际使用的这个流程的一个切身感受. 说句实在的, 对于模型转换的探索, 算是我这两天最大的收获了... 全部浓缩在了这里: https://github.com/lartpang/DHSNet-PyTorch/blob/master/converter.ipynb 鉴于github加载ipyn…
最近两天被windows下pytorch的安装给搞得很烦了,不过在今天终于安装成功了,如下图所示 下面详细说下此次安装的详细记录吧.我的电脑环境是Windows10+cuda9.0+cudnn7.1. 首先按照流程百度安装教程,然后发现大部分都是用官网https://pytorch.org/提供的命令安装,如下图所示 然后再安装的过程中,出现了很多HTTP之类的错误,而根据我安装其他python库的经验的话,意思就是访问国外的网站的话速度太慢了直接导致断掉,然后我根据错误来查找解决方案,得到的结…
Pytorch学习记录-torchtext和Pytorch的实例1 0. PyTorch Seq2Seq项目介绍 1. 使用神经网络训练Seq2Seq 1.1 简介,对论文中公式的解读 1.2 数据预处理 我们将在PyTorch中编写模型并使用TorchText帮助我们完成所需的所有预处理.我们还将使用spaCy来协助数据的标记化. # 引入相关库 import torch import torch.nn as nn import torch.optim as optim from torcht…
深度学习从入门到入土,安装软件及配置环境踩了不少坑,过程中参考了多处博主给的解决方法,遂整合一下自己的采坑记录. (若遇到不一样的错误,请参考其他博主答案解决) 笔者电脑系统为win10系统,在此环境下安装 Pycharm 5.0.3 Anaconda  3 Python 3.6.9 cuda 10.1 Pytorch 1.3.1 1.安装Pycharm 5.0.3,顺带下载地址: PyCharm5.0(32/64)位下载地址: 链接:https://pan.baidu.com/s/1eTYTy…
1. PyTorch进行训练和测试时指定实例化的model模式为:train/eval eg: class VAE(nn.Module): def __init__(self): super(VAE, self).__init__() ... def reparameterize(self, mu, logvar): if self.training: std = logvar.mul(0.5).exp_() eps = Variable(std.data.new(std.size()).nor…
1. UserWarning: Implicit dimension choice for log_softmax has been deprecated. Change the call to include dim=X as an argument. return F.log_softmax(x) 解决方法:把 F.log_softmax(x)改为F.log_softmax(x,dim=0) , 而且我发现改为F.log_softmax(x,dim=1),这个到底哪个更合理需要进一步确认.…