[读论文]Shading-aware multi view stereo】的更多相关文章

如何实现refine的? 几何误差和阴影误差如何加到一起? 为了解决什么问题? 弱纹理或无纹理:单纯的多视图立体算法在物体表面弱纹理或者无纹理区域重建完整度不够高,精度也不够高,因此结合阴影恢复形状来重建物体表面的高频细节. 物体表面具有随空间变化的反照率的区域:使用双三次模型完成光滑表面面片的表达,从而隐式保证了模型对空间变化反照率区域的有效性. 能量方程权重因子:利用图像梯度,在梯度大的区域纹理丰富使用几何约束,梯度小的区域表面平坦均匀使用明暗阴影约束. 同样是利用图片中的阴影信息,是否有考…
读论文系列:Deep transfer learning person re-identification arxiv 2016 by Mengyue Geng, Yaowei Wang, Tao Xiang, Yonghong Tian Transfer Learning 旧数据训练得到的分类器,在新的数据上重新训练,从而在新数据上取得比较好的表现,新数据与旧数据有相似的地方,但具有不同的分布. Fine tuning一般步骤 这是InceptionV4的图示 移除Softmax分类层 换成与…
最近在研究用深度学习预测图像深度信息的方法,一开始用的是2017年CVPR上Godard大神的monodepth,代码在这里.这篇文章介绍了利用双目的consistency训练网络以对单张图像进行深度估计,思路还是蛮有新意的.某天在必应上无意中发现了商汤(sensetime)的Yue Luo同学发表在2018年CVPR上的一篇文章Single View Stereo Matching,代码开源了,因此fork一下clone下来跑一跑,没想到按照readme跑第一步installation就遇到了…
本系列的第六篇,一起读论文~ 本人才疏学浅,不足之处欢迎大家指出和交流. 今天要分享的是另一个Deep模型NFM(串行结构).NFM也是用FM+DNN来对问题建模的,相比于之前提到的Wide&Deep(Google).DeepFM(华为+哈工大).PNN(上交)和之后会分享的的DCN(Google).DIN(阿里)等,NFM有什么优点呢,下面就走进模型我们一起来看看吧. 原文:Neural Factorization Machines for Sparse Predictive Analytic…
简介 WordPress是Wordpress基金会的一套使用PHP语言开发的博客平台.该平台支持在PHP和MySQL的服务器上架设个人博客网站.WordPress 插件是WordPress开源的一个应用插件. The Calendar Event Multi View WordPress Plugin 存在安全漏洞,该漏洞源于在1.4.01版本之前的此插件在将"start"和"end"GET参数输出到页面之前(通过php edit.php)没有清理或转义它们,导致了…
读这篇论文“ Multi Column Deep Neural Network for Traffic Sign Classification”是为了更加理解,论文“Multi-column Deep Neural Networks for Image Classification”…
读本篇论文“Batch-normalized Maxout Network in Network”的原因在它的mnist错误率为0.24%,世界排名第4.并且代码是用matlab写的,本人还没装cafe……  理论知识 本文是台湾新竹国立交通大学的Jia-Ren Chang 写的,其实要说这篇文章有多在的创新,还真没有,实际上它就是把三篇比较新的论文的东西组合起来,分别是这三篇: 1.Network in network :ICLR 2014 2.Maxout Networks :ICML 20…
本文为您解读SPP-net: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Motivation 神经网络在计算机视觉方面的成功得益于卷积神经网络,然而,现有的许多成功的神经网络结构都要求输入为一个固定的尺寸(比如224x224,299x299),传入一张图像,需要对它做拉伸或者裁剪,再输入到网络中进行运算. 然而,裁剪可能会丢失信息,拉伸会使得图像变形,这些因素都提高了视觉任务的门槛,…
转载请注明作者:梦里茶 Faster RCNN在Fast RCNN上更进一步,将Region Proposal也用神经网络来做,如果说Fast RCNN的最大贡献是ROI pooling layer和Multi task,那么RPN(Region Proposal Networks)就是Faster RCNN的最大亮点了.使用RPN产生的proposals比selective search要少很多(300vs2000),因此也一定程度上减少了后面detection的计算量. Introducti…
Deep Learning的基本思想 假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为: I =>S1=>S2=>…..=>Sn => O,如果输出O等于输入I,即输入I经过这个系统变化之后没有任何的信息损失(不过大牛说,这是不可能的.信息论中有个“信息逐层丢失”的说法(信息处理不等式),设处理a信息得到b,再对b处理得到c,那么可以证明:a和c的互信息不会超过a和b的互信息.这表明信息处理不会增加信息,大部分处理会丢失信息.),保持了不变…