Attention & Transformer seq2seq; attention; self-attention; transformer; 1 注意力机制在NLP上的发展 Seq2Seq,Encoder,Decoder 引入Attention,Decoder上对输入的各个词施加不同的注意力 https://wx1.sbimg.cn/2020/09/15/9FZGo.png Self-attention,Transformer,完全基于自注意力机制 Bert,双向Transformer,ma…
1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原理解析 6. 从Encoder-Decoder(Seq2Seq)理解Attention的本质 1. 前言 谷歌在2017年发表了一篇论文名字教Attention Is All You Need,提出了一个只基于attention的结构来处理序列模型相关的问题,比如机器翻译.传统的神经机器翻译大都是利…
1.Attention Model 概述 深度学习里的Attention model其实模拟的是人脑的注意力模型,举个例子来说,当我们观赏一幅画时,虽然我们可以看到整幅画的全貌,但是在我们深入仔细地观察时,其实眼睛聚焦的就只有很小的一块,这个时候人的大脑主要关注在这一小块图案上,也就是说这个时候人脑对整幅图的关注并不是均衡的,是有一定的权重区分的.这就是深度学习里的Attention Model的核心思想. 人脑的注意力模型,说到底是一种资源分配模型,在某个特定时刻,你的注意力总是集中在画面中的…
此文源自一个博客,笔者用黑体做了注释与解读,方便自己和大家深入理解Attention model,写的不对地方欢迎批评指正.. 1.Attention Model 概述 深度学习里的Attention model其实模拟的是人脑的注意力模型,举个例子来说,当我们观赏一幅画时,虽然我们可以看到整幅画的全貌,但是在我们深入仔细地观察时,其实眼睛聚焦的就只有很小的一块,这个时候人的大脑主要关注在这一小块图案上,也就是说这个时候人脑对整幅图的关注并不是均衡的,是有一定的权重区分的.这就是深度学习里的At…
Transformer Transformer是NLP的颠覆者,它创造性地用非序列模型来处理序列化的数据,而且还获得了大成功.更重要的是,NLP真的可以"深度"学习了,各种基于transformer的模型层出不穷,如BERT.GPT-2.T-NLG,而且模型参数量呈指数级增长. Transformer之前,大家的思路都是在改进序列模型,从RNN到LSTM.GRU.Seq2Seq.如果你看过我之前写的深入浅出RNN就会知道,序列模型要靠遍历seq_len来处理data,效率低是显而易见的…
1.现状 (1) 模型层数加深 (2) 模型参数量变大 (3) 难以训练 (4) 难以fine-tune 2. 单层参数量和占用内存分析 层 参数设置 参数量与占用内存 1 layer 0.5Billion 0.5Billion * 4Byte = 2GB embedding layer 64K tokens 1024 emb_size 8 batch_size 参数量 64K × 1K × 8 = 0.5B 内存 2GB 3. Transformer 模型内存占用的问题以及Reformer相应…
Awesome-Repositories-for-Text-Modeling repo paper miracleyoo/DPCNN-TextCNN-Pytorch-Inception Deep Pyramid Convolutional Neural Networks for Text Categorization Cheneng/DPCNN Deep Pyramid Convolutional Neural Networks for Text Categorization conv-RNN…
这个github感觉很不错,把一些比较新的实现都尝试了: https://github.com/brightmart/text_classification fastText TextCNN TextRNN RCNN Hierarchical Attention Network seq2seq with attention Transformer("Attend Is All You Need") Dynamic Memory Network EntityNetwork:trackin…
目录 前言 BERT模型概览 Seq2Seq Attention Transformer encoder部分 Decoder部分 BERT Embedding 预训练 文本分类试验 参考文献 前言 在18年末时,NLP各大公众号.新闻媒体都被BERT(<BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding>)刷屏了,刷新了自然语言处理11项纪录,也被称为了2018年最强自然语言处理模型.…
论文提出了结合注意力卷积的二叉神经树进行弱监督的细粒度分类,在树结构的边上结合了注意力卷积操作,在每个节点使用路由函数来定义从根节点到叶子节点的计算路径,结合所有叶子节点的预测值进行最终的预测,论文的创意和效果来看都十分不错   来源:晓飞的算法工程笔记 公众号 论文: Attention Convolutional Binary Neural Tree for Fine-Grained Visual Categorization 论文地址:https://arxiv.org/abs/1909.…