bzoj 2115】的更多相关文章

[把三道我做过的线性基题目放在一起总结一下,代码都挺简单,主要就是贪心思想和异或的高斯消元] [然后把网上的讲解归纳一下] 1.线性基: 若干数的线性基是一组数a1,a2,a3...an,其中ax的最高位的1在第x位. [就是原集合的任意子集的异或和 与 线性基的任意子集的异或和 完全相等] 2.线性基的构造法: 对每个数p从高位到低位扫,扫到第x位为1时,若ax不存在,则ax=p并结束此数的扫描,否则令p=p xor ax. [高斯消元] 异或版高斯消元后的线性基会变成类似上面的样子(线性基是…
题目传送门 这是个通往vjudge的虫洞 这是个通往bzoj的虫洞 题目大意 问点$1$到点$n$的最大异或路径. 因为重复走一条边后,它的贡献会被消去.所以这条路径中有贡献的边可以看成是一条$1$到$n$的简单路径加上若干个环. 因此可以找任意一条路径,然后找出所有环扔进线性基跑出最大异或和. 但是找出所有环可能会T掉,但是仔细画图发现,并不需要找出所有环,例如: 在上图中,你并不需找出所有的环,只用找出1 - 3 - 4 - 2和3 - 5 - 6 - 4这两个环,它们异或后就能得到环1 -…
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2115 题意:给出一个带权无向图.求一条1到n的路径使得路径上权值的抑或值最大? 思路:(1)从1DFS,记录每个环的抑或值以及从1到每个点的抑或值f: (2)令ans=f[n],那么从高位到低位,若ans的某一位为0,看是否能通过某些环使得该位为1. #include <iostream>#include <cstdio>#include <string.h>…
2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 797  Solved: 375[Submit][Status] Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图中可能有重边或自环. Output 仅包含一个整数,表示最大的XOR和(十进制结…
2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 2794  Solved: 1184 [Submit][Status][Discuss] Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图中可能有重边或自环. Output 仅包含一个整数,表…
https://www.lydsy.com/JudgeOnline/problem.php?id=2115 每一条从1到n的道路都可以表示为一条从1到n的道路异或若干个环的异或值. 那么把全部的环丢到线性基里基本操作就可以了.. https://blog.csdn.net/qaq__qaq/article/details/53812883 这个博客非常好 #include<iostream> #include<cstdio> #include<algorithm> #i…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2115 给定一个带权无向图,要找出从1到n路径权值异或和最大的那一条的路径异或和. 考虑1到n的任意一条路径,都可以表示为1到n的一条路径,加上图上任意的一些环(1所在的那个连通块).之所以可以这样,是因为图是连通的,而且无向的,走过去也可以走回来,所以假设当前走到了i号点,我想去走一些环,那么可以i->j->在环j上走一圈->j->i,这条路径上仅仅是异或上了一次环的权值(…
Link:https://www.lydsy.com/JudgeOnline/problem.php?id=2115 Algorithm: 此题一看到是求异或和最大问题的,立即想到使用线性基解题 最终结果发现是由任意一条1~N的路径和若干个环构成的 证明: 1.如果答案中有环不在任意选取的路径上,可以先走到环再走回来 由于异或的自反性,相当于只增加了环的异或和 2.如果答案中的1~N的路径不是这条,那么这条路径一定和当前任意选取的路径形成一个环 那么我们只要再增加这个环上的异或和,就相当于“更改…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2115 思路很精妙.好像能应用到很多地方. 发现如果路径上有环,可以通过一些走法达到 异或了那个环 或 没有异或那个环. 所以路径上如果有环,可以把它们的异或值都存下来,之后随便挑选. 发现所有1~n的路径互相成环. 这样就能随便找一条路径,然后把所有环的异或值存下来,用高斯消元随便挑选. 消元的时候尽量保留高位,而且要上下消,这样保留下来的每一行的首位就不会被其他行的挑选情况影响. 注意挑…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2115 题目大意是求一条从1到n的路径,使得路径xor和最大. 可以发现想枚举1到n的所有路径是不行的. 首先有个结论:一个无向连通图G中有且仅有M-N+1个独立回路. 独立回路是指任意一个都不能由其他回路构成. 引用一段数学归纳法证明: “M=N-1时,树,结论成立 设M=K时结论成立,当M=K+1时,任取G中一条边e,G-e中有K-N+1个独立回路,且 任取一个包含e的回路C,显然独立…