好久没更博客了,先水一篇再说.其实这个做法应该算是杜教筛的一个拓展. powerful number的定义是每个质因子次数都 $\geq 2$ 的数.首先,$\leq n$ 的powerful number个数是 $O(\sqrt{n})$ 的,这是因为所有powerful number显然可以表示成 $a^2b^3$,所以个数不超过 $\sum_{i=1}^{\sqrt{n}} (n/i^2)^{1/3}$,积分积一下就算出来了.求所有 $\leq n$ 的powerful number只要暴…
算法原理 本文参考了 zzq's blog . \(\text{powerful number}\) 的定义是每个质因子次数都 \(\ge 2\) 的数,有个结论是 \(\ge n\) 的 \(\text{powerful number}\) 只有 \(\mathcal O(\sqrt n)\) 个,如何找这些数呢?用暴力 \(\text{dfs}\) 从小到达枚举质因子及其幂次即可(类似于 \(\text{min_25}\) 第二部分). 比如对于函数 \(F(p^q) = p^k\) 其中…
问题描述 洲阁筛解决的问题主要是\(n\)范围较大的积性函数前缀和. ​ 已知一积性函数\(f(i)\),求\(\sum_{i=1}^nf(i)\). \(n\leq10^{12}\). 求解方法 如果\(f(i)\)在质数处的取值比较简单,那么可以运用洲阁筛来求解. ​ 我们需要两个辅助数组. \(g_{i,j}\) 定义如下: \[ \begin{aligned} g_{i,j}&=\sum_{k=2}^i[k与p_1,p_2,...,p_j互质或就是其中某个质数]\; s(k)\\ &…
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} a_{\frac n d} \] 双重因子 \[ \sum_{k | n} \sum_{j | k} a_{k, j} = \sum_{k | n} \sum_{j | \frac n k} a_{jk, k} \] \[ \sum_{n | k} \sum_{k | j} a_{k, j} = \…
题意:要求对于1~n,每个数的约数(不包括1和其本身)的和. 题解:由于题目数据有2*10^9之大,因而不能直接暴力.需要考虑积性函数的特性,由于必定有重复的约数出现,因而可以对重复约数所在的区间进行合并.由于对于较小的约数,其对应的较大的约数重复区间较小,所以可以先将较小的约数进行合并操作,然后对其对应的较大的约数的区间进行求和.以n=10为例,对于约数2而言,1~10中有2的约数的有10/2-1个(要减去2本身),而对于2在1~10内相对应的约数4和5,则可以直接进行求和操作,求和区间为[s…
定义 对于一个正整数 \(n\) ,若完全分解之后不存在指数 \(=1\) ,则称 \(n\) 为 \(\text{Powerful Number}\) . 可以发现的是,在 \([1,n]\) 中,\(\text{Powerful Number}\) 的数量是 \(\sqrt n\) 级别的. Powerful Number 在求积性函数前缀和中的应用 假设给出积性函数 \(f(x)\) 要求 \(\sum_{i=1}^{n} f(i)\),我们可以考虑引入一个拟合函数 \(g(x)\) 使得…
定义 Powerful Number(以下简称 PN)筛类似于杜教筛,可以拿来求一些积性函数的前缀和. 要求: 假设现在要求积性函数 \(f\) 的前缀和 \(F(n)=\sum_{i=1}^nf(i)\),需要存在一个函数 \(g\) 满足: \(g\) 是积性函数. \(g\) 易求前缀和. 对于质数 \(p\),\(g(p)=f(p)\) . Powerful Number 定义:每个质因子次数都 \(≥2\) 的数. 性质: 所有的 PN 都可以表示成 \(a^2b^3\). \(n\)…
Powerful Number 筛学习笔记 用途 \(Powerful\ number\) 筛可以用来求出一类积性函数的前缀和,最快可以达到根号复杂度. 实现 \(Powerful\ number\) 的定义是每个质因子次数都 \(\ge 2\) 的数. 有如下的性质: \(1\).一个 \(Powerful\ number\) 一定可以表示为 \(a^2b^3\) 的形式. \(2\).\(n\) 以内的 \(Powerful\ number\) 个数是 \(O(\sqrt n)\) 级别的.…
Powerful Number   对于 \(n\in\mathbb N_+\),若不存在素数 \(p\) 使得 \(p\mid n~\land~p^2\not\mid n\),则称 \(n\) 为 Powerful Number.即,\(n\) 的每个素因子至少以二次的形式存在.不难发现,任何一个 Powerful Number \(n\) 都可以写成 \(a^2b^3~(a,b\in\mathbb N_+)\) 的形式(但不唯一).接下来,我们研究其在正整数前缀序列中出现次数的规模,有 \[…
我也不想学筛法了,可你考试时候出一个新筛法就不厚道了吧,我还开始以为这是杜教筛... $tips:$学完杜教筛立马学$Powerful \ Number$筛法,此筛法强悍如斯 $Powerful \ Number$筛法 算是杜教筛的究极版$?$ 考虑筛积性函数$f$前缀和 求函数$F(n)$ $F(n)=\sum_{i=1}^{n}f(i)$ 时间复杂度$O(\sqrt{n})$ 主要是基于$PN$的筛法 定义$:$ $PN:n$质因数分解,$n=\prod_{i=1}^{m}p_i^{e_i}…