Harris Corner(Harris角检测)】的更多相关文章

在做图像匹配时,常需要对两幅图像中的特征点进行匹配.为了保证匹配的准确性,所选择的特征必须有其独特性,角点可以作为一种不错的特征. 那么为什么角点有其独特性呢?角点往往是两条边缘的交点,它是两条边缘方向变换的一种表示,因此其两个方向的梯度变换通常都比较大并且容易检测到. 这里我们理解一下Harris Corner 一种角点检测的算法 角点检测基本原理: 人们通常通过在一个小的窗口区域内观察点的灰度值大小来识别角点,如果往任何方向移动窗口都会引起比较大的灰度变换那么往往这就是我们要找的角点.如下图…
本系列文章由@浅墨_毛星云 出品.转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/29356187 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: happylifemxy@163.com 写作当前博文时配套使用的OpenCV版本号: 2.4.9 本篇文章中,我们一起探讨了Ope…
OpenCV中常用的角点检测为Harris角点和ShiTomasi角点. 以OpenCV源代码文件 .\opencv\sources\samples\cpp\tutorial_code\TrackingMotion\cornerDetector_Demo.cpp为例,主要分析其中的这两种角点检测源代码.角点检测数学原理请参考我之前转载的一篇博客 http://www.cnblogs.com/riddick/p/7645904.html,分析的很详细,不再赘述.本文主要分析其源代码: 1. Har…
Harris Corner网上已经有很多的资料了,但它也是我读研究生后读的第一篇论文,对我有一种特别的意义. 这篇文章我想从几个方面来讲解Harris Corner,一是Harris Corner的思想,二是Harris Corner重要公式的推导,三是从图像的层面直观的观察每一个公式的结果.本人能力有限,如有纰漏,万望指正.Any advice and suggestions will be greatly appreciated. 我们的目的是在图像上找到角点.那我们在图像上设置一个小窗,然…
目标 在本章中, 我们将了解"Harris Corner Detection"背后的概念. 我们将看到以下函数:cv.cornerHarris(),cv.cornerSubPix() 理论 在上一章中,我们看到角是图像中各个方向上强度变化很大的区域.Chris Harris和Mike Stephens在1988年的论文<组合式拐角和边缘检测器>中做了一次尝试找到这些拐角的尝试,所以现在将其称为哈里斯拐角检测器.他把这个简单的想法变成了数学形式.它基本上找到了(u,v)(u,…
import cv2 import numpy as np img=cv2.imread('opencv-corner-detection-sample.jpg') gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) gray = np.float32(gray) #最多使用100个角点,点之间的最小距离是10 corners = cv2.goodFeaturesToTrack(gray,100,0.01,10) corners = np.int0(corne…
Haar特征与积分图 1. Adaboost方法的引入 1.1 Boosting方法的提出和发展 在了解Adaboost方法之前,先了解一下Boosting方法. 回答一个是与否的问题,随机猜测可以获得50%的正确率.如果一种方法能获得比随机猜测稍微高一点的正确率,则就可以称该得到这个方法的过程为弱学习:如果一个方法可以显著提高猜测的正确率,则称获取该方法的过程为强学习.1994年,Kearns和Valiant证明,在Valiant的PAC(Probably ApproximatelyCorre…
一.基本概念 角点corner:可以将角点看做两个边缘的交叉处,在两个方向上都有较大的变化.具体可由下图中分辨出来: 兴趣点interest point:兴趣点是图像中能够较鲁棒的检测出来的点,它不仅仅局限于角点. 也可以是灰度图像极大值或者极小值点等 二.Harris角点检测 Harris 算子是 Haris & Stephens 1988年在 "A Combined Corner and Edge Detector" 中提出的 提出的检测算法, 现在已经成为图像匹配中常用的…
      计算机视觉中,我们经常要匹配两幅图像.匹配的的方式就是通过比较两幅图像中的公共特征,比如边,角,以及图像块(blob)等,来对两幅图像进行匹配.      相对于边,角更适合描述图像特征,比如下面的图像中,大概有6种特征,我们用A.B.C.D.E.F来描述,其中A, B是平的区域,在图像中很难精确定位,C,D是边,比A,B好些,但是图像中的边也很多,定位到某个边也比较困难,相比来说E,F的角更适合描述当前的图像的特征,也更好检测,因为你不论怎么移动图像,这些角的特征都和图像其它部分不…
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main(int argc, char** argv) { Mat src; src = imread(); if (src.empty()){ printf("Can not load Image..."); ; } imshow("input Image&quo…