spark SQL (二) 聚合】的更多相关文章

使用Spark SQL,除了使用之前介绍的方法,实际上还可以使用SQLContext或者HiveContext通过编程的方式实现.前者支持SQL语法解析器(SQL-92语法),后者支持SQL语法解析器和HiveSQL语法解析器,默认为HiveSQL语法解析器,用户可以通过配置切换成SQL语法解析器来运行HiveQL不支持的语法,如:select 1.实际上HiveContext是SQLContext的子类,因此在HiveContext运行过程中除了override的函数和变量,可以使用和SQLC…
*以下内容由<Spark快速大数据分析>整理所得. 读书笔记的第六部分是讲的是Spark SQL和Beeline. Spark SQL是Spark用来操作结构化和半结构化数据的接口. 一.在应用中使用Spark SQL 二.Spark SQL UDF VS. Hive UDF 三.Beeline 一.在应用中使用Spark SQL Spark SQL提供了一种特殊的RDD,叫作SchemaRDD.SchemaRDD是存放Row对象的RDD,每个Row对象代表一行记录.SchemaRDD还包含记…
聚合内置功能DataFrames提供共同聚合,例如count(),countDistinct(),avg(),max(),min(),等.虽然这些功能是专为DataFrames,spark SQL还拥有类型安全的版本,在其中的一些 scala 和 Java使用强类型数据集的工作.而且,用户可以预定义的聚合函数,也可以创建自己自定义的聚合函数. 1, 非类型化的用户定义的聚合函数 用户必须扩展UserDefinedAggregateFunction 抽象类来实现自定义的非类型集合函数.例如,用户定…
一.简单聚合 1.1 数据准备 // 需要导入spark sql内置的函数包 import org.apache.spark.sql.functions._ val spark = SparkSession.builder().appName("aggregations").master("local[2]").getOrCreate() val empDF = spark.read.json("/usr/file/json/emp.json")…
一.简单聚合 1.1 数据准备 // 需要导入 spark sql 内置的函数包 import org.apache.spark.sql.functions._ val spark = SparkSession.builder().appName("aggregations").master("local[2]").getOrCreate() val empDF = spark.read.json("/usr/file/json/emp.json"…
简单地说,Shark 的下一代技术 是Spark SQL. 由于 Shark 底层依赖于 Hive,这个架构的优势是对传统 Hive 用户可以将 Shark 无缝集成进现有系统运行查询负载. 但是也看到一些问题:一方面,随着版本升级,查询优化器依赖于 Hive,不方便添加新的优化策略,需要进行另一套系统的学习和二次开发,学习成本很高. 另一方面, MapReduce是进程级并行,例如: Hive 在不同的进程空间会使用一些静态变量,当在同一进程空间进行多线程并行执行,多线程同时写同名称的静态变量…
在Spark中,也支持Hive中的自定义函数.自定义函数大致可以分为三种: UDF(User-Defined-Function),即最基本的自定义函数,类似to_char,to_date等 UDAF(User- Defined Aggregation Funcation),用户自定义聚合函数,类似在group by之后使用的sum,avg等 UDTF(User-Defined Table-Generating Functions),用户自定义生成函数,有点像stream里面的flatMap 本篇…
摘要:在Spark开发中,由于需要用Python实现,发现API与Scala的略有不同,而Python API的中文资料相对很少.每次去查英文版API的说明相对比较慢,还是中文版比较容易get到所需,所以利用闲暇之余将官方文档翻译为中文版,并亲测Demo的代码.在此记录一下,希望对那些对Spark感兴趣和从事大数据开发的人员提供有价值的中文资料,对PySpark开发人员的工作和学习有所帮助. 官网地址:http://spark.apache.org/docs/1.6.2/api/python/p…
一.安装spark spark SQL是spark的一个功能模块,所以我们事先要安装配置spark,参考: https://www.cnblogs.com/lay2017/p/10006935.html 二.数据准备 演示操作将从一个类似json文件里面读取数据作为数据源,并初始化为dataframe,我们准备一个user.json文件 在/usr/local/hadoop/spark目录(可以自定义目录)下新建一个user.json文件内容如下: {"id" : "1201…
上周Spark1.2刚公布,周末在家没事,把这个特性给了解一下,顺便分析下源代码,看一看这个特性是怎样设计及实现的. /** Spark SQL源代码分析系列文章*/ (Ps: External DataSource使用篇地址:Spark SQL之External DataSource外部数据源(一)演示样例 http://blog.csdn.net/oopsoom/article/details/42061077) 一.Sources包核心 Spark SQL在Spark1.2中提供了Exte…