P5686 和积和】的更多相关文章

写在前面 数学题接触的少,卡了半下午,愣是没想到直接往前缀和上考虑,按元素强推莽了半下午 Description 直接跳转到题目去啊 Solution 记 \(A,B\) 的前缀和序列分别为 \(sA,sB\). 那么随便找一组数据,就会发现答案可以由一坨下标相等的前缀和积和减去另外一坨下标不等的前缀和积和. 而且下标相等的部分正好是对于每个下标 \(i\), \(sA_i sB_i\) 都被计算了 \(n\) 次. 那么加的部分就很好处理了.即: \[n \bullet \sum_{i=1}^…
传送门 思路 应用多个前缀和推出式子即可 \(30pts\): 首先如果暴力算的话很简单,直接套三层循环就好了(真的是三层!!最后两个\(sigma\)一起算就好了) \[\sum_{l = 1}^{n}\sum_{r = l}^{n}\sum_{i = l}^{r}a[i]\sum_{i = l}^{r}b[i]\] \(70pts\): 其实不用这么麻烦,我们发现最后两个\(sigma\)可以用前缀和\(O(1)\)算出来,这样就可以\(70\)分了(见代码\(sub1\)) \(100pt…
BZOJ_2956_模积和_数学 Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表示答案mod 19940417的值 Sample Input 3 4 Sample Output 1 样例说明 答案为(3 mod 1)*(4 mod 2)+(3 mod 1) * (4 mod 3)+(3 mod 1) * (4 mod 4) + (3 mod 2) * (…
1 信号处理中的卷积 无论是信号处理.图像处理还是其他一些领域,我们经常会在一些相互关联的数据处理中使用卷积.卷积可以说是算法中一个非常重要的概念.这个概念最早起源于信号处理之中. 假设对于一个线性系统其在单位脉冲δ(t)的响应下,输出为h(t).那么在Aδ(t)的响应下输出为Ah(t).而所有的信号都可以用δ(t)乘以一个系数的和来表示.即 .于是对于线性系统而言,我们可以将当前及过去所有时刻信号(看出无数个脉冲乘以系数)产生的输出进行叠加来得到当前时刻的输出.即对于任意时刻 的输出为 .关于…
P2260 [清华集训2012]模积和 整除分块+逆元 详细题解移步P2260题解板块 式子可以拆开分别求解,具体见题解 这里主要讲的是整除分块(数论分块)和mod不为素数时如何求逆元 整除分块:求Σ「n/i」(i=1~n),「」表示向下取整 由于「n/i」在某段区间内都有相同的值,所以可以分块算,复杂度O( sqrt(n) ) code: ll res=; ,r;l<=n;l=r+){ r=n/(n/l): res=res+(r-l+)*(n/l);}return res; 当mod是素数时,…
Time Limit: 10 Sec  Memory Limit: 128 MB Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表示答案mod 19940417的值 Sample Input 3 4 Sample Output 1 样例说明 答案为(3 mod 1)*(4 mod 2)+(3 mod 1) * (4 mod 3)+(3 mod 1) * (…
[BZOJ2956]模积和 Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表示答案mod 19940417的值 Sample Input 3 4 Sample Output 1 样例说明 答案为(3 mod 1)*(4 mod 2)+(3 mod 1) * (4 mod 3)+(3 mod 1) * (4 mod 4) + (3 mod 2) * (4 m…
> Many problems in the field of signal processing have been expended into matrix problems.So it's necessary for us to know some basic knowledge,including matrix inner product and Schur Complement. 信号领域的很多问题已经扩展到矩阵问题.所以我们很必要学习一些相关的基本知识,例如内积和Schur补. ##…
第一部分 P1403 [AHOI2005]约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工作取得了不错的成绩,小联被允许用“Samuel II”进行数学研究. 小联最近在研究和约数有关的问题,他统计每个正数N的约数的个数,并以f(N)来表示.例如12的约数有1.2.3.4.6.12.因此f(12)=6.下表给出了一些f(N)的取值: f(n)表示n的约数个数,现在给出n,要求求…
参考资料:<信号与系统(第二版)> 杨晓非 何丰 连续信号的是卷积积分,离散信号的是卷积和. 脉冲分量 任意非周期信号,将横坐标分为若干个微小等分,得到Δτ为宽,f(kΔτ)为高的一系列微小矩形,每一个微小矩形都是f(kΔτ)为高的门限函数fk(t)=f(kΔτ)gΔτ(t-kΔτ),Δτ越小,误差越小.当Δτ→0时,有Δτ→dτ,kΔτ→τ(这里的k趋近于无穷),由此等式的极限精确地等于原函数. 因此该积分式定义为任意信号f(t)与单位冲激信号δ(t)卷积积分: 任意离散信号的分解 任意离散…
计算长方体.四棱锥的表面积和体积 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 计算如下立体图形的表面积和体积. 从图中观察,可抽取其共同属性到父类Rect中:长度:l 宽度:h 高度:z 在父类Rect中,定义求底面周长的方法length( )和底面积的方法area( ). 定义父类Rect的子类立方体类Cubic,计算立方体的表面积和体积.其中表面积area( )重写父类的方法. 定义父类Rect的子类四棱锥类…
题目描述: Java编程实现圆柱体表面积和体积的计算,要求从键盘上输入圆的半径和高,然后输出结果. 题目分析: 首先定义Circle类,然后在main方法中创建Circle类的对象c,利用对象c访问其成员方法setR(),为其成员变量r赋值,访问其成员方法setH(),为其成员变量h赋值.最后通过对象c调用getArea()和getVolume()方法分别计算圆柱体表面积和体积并输出结果. 代码: package com.web; import java.util.Scanner; class…
一.题目 P2260 [清华集训2012]模积和 二.分析 参考文章:click here 具体的公式推导可以看参考文章.博主的证明很详细. 自己在写的时候问题不在公式推导,公式还是能够比较顺利的推导出来,但是,码力不够,比如说在乘积的时候,因为输入时候的$n$和$m$没有注意,一直用的$int$类型的,导致中间结果早就爆了,自己却浑然不知. 还有一个细节就是题目给的模数不是质数,所以求逆元的时候需要使用扩展欧几里得进行求解逆元. 三.AC代码 1 #include <bits/stdc++.h…
「BZOJ 2956」模积和 令 \(l=\min(n,m)\).这个 \(i\neq j\) 非常不优雅,所以我们考虑分开计算,即: \[\begin{aligned} &\sum_{i=1}^{n}\sum_{j=1,i\neq j}^{m}(n \bmod i)(m\bmod j)\\ =&\sum_{i=1}^{n}\sum_{j=1}^{m}(n \bmod i)(m\bmod j)-\sum_{i=1}^{\texttt{l}}(n \bmod i)(m\bmod i)\\ \…
计算球,圆柱,圆锥的表面积和体积. 利用接口实现. 上代码. Contants.java 常量存储类 package com.fuxuemingzhu.solidgraphics.contants; /** * <p> * Title: Contants * </p> * <p> * Description:常量类,存放程序里用到的常量值 * </p> * * @author fuxuemingzhu * * @email fuxuemingzhu@163.…
题意 求\(\sum_{i=1}^{n} \sum_{j=1}^{m} (n \ mod \ i)(m \ mod \ j)[i \neq j] \ mod \ 19940417\), \((n, m \le 10^9)\) 分析 以下均设\(n \le m\) $$\begin{align}&\sum_{i=1}^{n} \sum_{j=1}^{m} (n \ mod \ i)(m \ mod \ j)[i \neq j] \ mod \ 19940417\\\equiv &\left(…
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2956 题意:给出n和m.计算: 思路: i64 n,m; i64 cal(i64 m,i64 n){    i64 ans=0,i,x,y;    for(i=1;i<=n;i++)    {        x=m/i; y=min(n,m/x);        ans+=(i+y)*(y-i+1)/2%mod*x%mod;        ans%=mod;        i=y; …
Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 6386    Accepted Submission(s): 2814 Problem Description There are several ancient Greek texts that contain descriptions of the fabled i…
整除分块 一般形式:\(\sum_{i = 1}^n \lfloor \frac{n}{i} \rfloor * f(i)\). 需要一种高效求得函数 \(f(i)\) 的前缀和的方法,比如等差等比数列求和或对于积性函数的筛法等,然后就可以用整除分块的思想做. 题目解法 化公式变成比较方便的形式: \(\ \sum_{i = 1}^n \sum_{j = 1}^m (n \mod i)(m \mod j), i \ne j\) \(= \sum_{i = 1}^n \sum_{j = 1}^m…
这边只演示一下最新系统的安装过程,设置之类的和以前讲的Kali以及CentOS大同小异:https://www.cnblogs.com/dunitian/p/4822808.html#linux 和CentOS对比一下体积: 自带Python版本…
论文原址:MobileNets v1 TensorFlow实现:mobilenet_v1.py TensorFlow预训练模型:mobilenet_v1.md 一.深度可分离卷积 标准的卷积过程可以看上图,一个2×2的卷积核在卷积时,对应图像区域中的所有通道均被同时考虑,问题在于,为什么一定要同时考虑图像区域和通道?我们为什么不能把通道和空间区域分开考虑? 深度可分离卷积提出了一种新的思路:对于不同的输入channel采取不同的卷积核进行卷积,它将普通的卷积操作分解为两个过程. 卷积过程 假设有…
Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表示答案mod 19940417的值 Sample Input 3 4 Sample Output 1 样例说明 答案为(3 mod 1)(4 mod 2)+(3 mod 1) (4 mod 3)+(3 mod 1) * (4 mod 4) + (3 mod 2) * (4 mod 1) + (3 mod 2)…
题意 题目链接 Sol 啊啊这题好恶心啊,推的时候一堆细节qwq \(a \% i = a - \frac{a}{i} * i\) 把所有的都展开,直接分块.关键是那个\(i \not= j\)的地方需要减.... 然后就慢慢写就好了 #include<bits/stdc++.h> #define Pair pair<int, int> #define MP(x, y) make_pair(x, y) #define fi first #define se second #defi…
对任意 2 个 1,2,3,4,5,6 的全排列 $(a_1,a_2,a_3,a_4,a_5,a_6)$ 和 $(b_1,b_2,b_3,b_4,b_5,b_6)$,求$\displaystyle S=\sum_{i=1}^6 ia_ib_i$ 的最小值______ 解答:$\displaystyle\sum_{i=1}^6 ia_ib_i \ge6\sqrt[6]{6!}=72\sqrt{5}>160.$又$162=1*5*5+2*4*4+3*3*3+4*6*1+5*1*6+6*2*2$且设$…
先算出无限制的情况,再减去i==j的情况. 无限制的情况很好算,有限制的情况需要将式子拆开. 注意最后的地方要用平方和公式,模数+1是6的倍数,于是逆元就是(模数+1)/6 #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #define MOD(x) ((x)>=mod?(x)-mod:(x)) using namespace std; ,six=; int…
Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表示答案mod 19940417的值 Sample Input 3 4 Sample Output 1 样例说明答案为(3 mod 1)*(4 mod 2)+(3 mod 1) * (4 mod 3)+(3 mod 1) * (4 mod 4) + (3 mod 2) * (4 mod 1) + (3 mod…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2956 [题目大意] 求∑∑((n%i)*(m%j))其中1<=i<=n,1<=j<=m,i≠j. [题解] $∑_{i=1}^{n}∑_{j=1}^{m}((n\mod i)*(m\mod j))(i≠j)$ $=∑_{i=1}^{n}∑_{j=1}^{m}(n-\lfloor \frac{n}{i}\rfloor*i)*(m-\lfloor \frac{m}{j}\r…
题目描述 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. 输入 第一行两个数n,m. 输出 一个整数表示答案mod 19940417的值 样例输入 3 4 样例输出 1 题解 数论+分块 由于直接求i≠j的情况比较难搞,所以我们可以先求出i可以等于j的和,然后再减去i等于j时的情况. 也就是求∑∑((n mod i)*(m mod j))-∑((n mod i)*(m mod i)). 然后再根据乘法分配律转化为∑(n mod i)*∑…