简介 Sympy是一个Python的科学计算库,用一套强大的符号计算体系完成诸如多项式求值.求极限.解方程.求积分.微分方程.级数展开.矩阵运算等等计算问题.虽然Matlab的类似科学计算能力也很强大,但是Python以其语法简单.易上手.异常丰富的三方库生态,个人认为可以更优雅地解决日常遇到的各种计算问题. 目录 1.解方程组solve()2.求极限limit()3.微分(导数)diff()4.积分  4-1.定积分integrate()  4-2.求不定积分integrate(),dsolv…
https://www.cnblogs.com/zgyc/p/6277562.html SymPy完全是用Python写的,并不需要外部的库 原理: 单纯用语言内置的运算与变量解决的是,由值求结果.如: print(x+y) #会报错 上式中的x与y在这条语句执行前你肯定得赋值的,否则就会出错. 而符号计算不同,你可以在之前将其设为符号. x = Symbol('x') y = Symbol('y') print(x+y) 上述代码是可以的.因为Sympy库将x与y转换成了符号(概念上). 经过…
题意:  一个人在一条线段来回走(遇到线段端点就转变方向),现在他从起点出发,并有一个初始方向, 每次都可以走1, 2, 3 ..... m步,都有对应着一个概率.问你他走到终点的概率 思路: 方向问题很是问题,我们可以把线段改造成环,具体我们可以把除端点以外的点作为另一个半圆 和原来的线段拼成一个环, 方向就单一了,用dp[i]表示在i点的时候到达终点的期望步数,则dp[i]=dp[(i+1)%N]*p1+E[(i+2)%N]*p2+…E[(i+m)%N]*pm+1. 这里N为变成环以后的点数…
题目链接:http://poj.org/problem?id=2006 解题报告: 题意看了半天,没看懂,再加上化学没学好,更加让我头痛. 假设1L溶解了x摩尔的酸:ka=m*x*nx/ori-x; 得:mnx*x+kax-ka*ori=0; 解方程x=(sqrt(k*k*a*a+4mnka*ori)-ka)/2mn; 溶度为x*m; PH=log10(x*m); 这里log是e为底的,应该用log((double)10) #include<stdio.h> #include<math.…
目录 目录 前言 (一)求解多元一次方程-solve() 1.说明: 2.源代码: 3.输出: (二)解线性方程组-linsolve() 1.说明: 2.源代码: 3.输出: (三)解非线性方程组-nonlinsolve() 1.说明: 2.源代码: 3.输出: (四)求解微分方程-dsolve() 1.说明: 2.源代码: 3.输出: 目录 前言 sympy不仅在符号运算方面强大,在解方程方面也是很强大. 本章节学习对应官网的:Solvers 官方教程 https://docs.sympy.o…
[怪毛匠子=整理] SymPy 库 安装 sudo pip install sympy x = Symbol('x') 解方程 solve([2 * x - y - 3, 3 * x + y - 7],[x, y]) 求极限 limit(x*(sqrt(x**2 + 1) - x), x, oo) oo 无穷大(标识方式是两个小写字母o连接在一起) E e pi 圆周率 integrate函数用于积分问题 求导 diff(f(x),x) 及多阶求导 >>> diff(x**3,x) 3*…
一元一次方程 例题1: 这是北师大版小学六年级上册课本95页的一道解方程练习题: 大家可以先口算一下,这道题里面的x的值为200 接下来我们用python来实现,代码如下,每一句代码后面都写有解释语: # 一元一次方程 x = sy.symbols("x") # 申明未知数"x" a = sy.solve((x+(1/5)*x-240),[x]) # 写入需要解的方程体 print(a) 大家应该注意到了,在写入方程体的时候,(上面的第三行代码)我们并没有原封不动的…
FDM解常微分方程 问题描述 \[\frac{d^2\phi}{dx^2}=S_{\phi} \tag{1} \] 这是二阶常微分方程(second-order Ordinary Differential Equation, ODE),考虑最简单的情况即\(S=0\),积分后可得\(\phi=c_1x+c_2\),有两个待定系数,因此要求解该方程必须提供两个边界条件(因为方程中不包含时间项,因此无初始条件),例如 \[\phi(x_L)=\phi_L \quad \phi(x_R)=\phi_R…
背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已知多项式方程: $$a_0+a_1x+a_2x^2+...+a_nx^n=0$$ 求这个方程在[1, m]内的整数解(n 和 m 均为正整数). 输入格式 输入共 n+2 行. 第一行包含 2 个整数 n.m,每两个整数之间用一个空格隔开. 接下来的 n+1 行每行包含一个整数,依次为$a_0,a_…
题意: 给一个圆盘,圆心为(0,0),半径为Rm, 然后给一个圆形区域,圆心同此圆盘,半径为R(R>Rm),一枚硬币(圆形),圆心为(x,y),半径为r,一定在圆形区域外面,速度向量为(vx,vy),硬币向圆盘撞过去,碰到圆盘后会以相反方向相同速度回来(好像有点违背物理规律啊,但是题目是这样,没办法).问硬币某一部分在圆形区域内的总时间. 解法: 解方程,求 (x+vx*t,y+vy*t) 代入圆形区域方程是否有解,如果没解,说明硬币运动轨迹与圆形区域都不相交,答案为0 如果有解,再看代入圆盘有…