PyTorch 学习】的更多相关文章

目录 pytorch学习 numpy & Torch Variable 激励函数 回归 区分类型 快速搭建法 模型的保存与提取 批训练 加速神经网络训练 Optimizer优化器 CNN MNIST手写数据 Reference pytorch学习 numpy & Torch import torch import numpy as np np_data = np.arange(6).reshape((2, 3)) torch_data = torch.from_numpy(np_data)…
Pytorch学习之源码理解:pytorch/examples/mnists from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.optim.…
Pytorch学习记录-torchtext和Pytorch的实例1 0. PyTorch Seq2Seq项目介绍 1. 使用神经网络训练Seq2Seq 1.1 简介,对论文中公式的解读 1.2 数据预处理 我们将在PyTorch中编写模型并使用TorchText帮助我们完成所需的所有预处理.我们还将使用spaCy来协助数据的标记化. # 引入相关库 import torch import torch.nn as nn import torch.optim as optim from torcht…
Pytorch学习系列(一)至(四)均摘自<深度学习框架PyTorch入门与实践>陈云 目录: 1.程序的主要功能 2.文件组织架构 3. 关于`__init__.py` 4.数据处理 5.模型定义 6.工具函数 7.配置文件 8.main.py 9.使用 1.程序的主要功能: 模型定义    数据加载    训练和测试 2.文件组织架构: ```├── checkpoints/├── data/│   ├── __init__.py│   ├── dataset.py│   └── get_…
目录: PyTorch学习教程.手册 PyTorch视频教程 PyTorch项目资源      - NLP&PyTorch实战      - CV&PyTorch实战 PyTorch论文推荐 Pytorch书籍推荐 一.PyTorch学习教程.手册 (1)PyTorch英文版官方手册:https://pytorch.org/tutorials/.对于英文比较好的同学,非常推荐该PyTorch官方文档,一步步带你从入门到精通.该文档详细的介绍了从基础知识到如何使用PyTorch构建深层神经网…
[深度学习] Pytorch学习(一)-- torch tensor 学习笔记 . 记录 分享 . 学习的代码环境:python3.6 torch1.3 vscode+jupyter扩展 #%% import torch print(torch.__version__) # 查看CUDA GPU是否可用 a = torch.cuda.is_available() print(a) #%% # torch.randperm x = torch.randperm(6) print(x) #%% #…
记录如何用Pytorch搭建LeNet-5,大体步骤包括:网络的搭建->前向传播->定义Loss和Optimizer->训练 # -*- coding: utf-8 -*- # All codes and comments from <<深度学习框架Pytorch入门与实践>> # Code url : https://github.com/zhouzhoujack/pytorch-book # lesson_2 : Neural network of PT(Py…
书上内容太多太杂,看完容易忘记,特此记录方便日后查看,所有基础语法以代码形式呈现,代码和注释均来源与书本和案例的整理. # -*- coding: utf-8 -*- # All codes and comments from <<深度学习框架Pytorch入门与实践>> # Code url : https://github.com/zhouzhoujack/pytorch-book # lesson_1 : Basic code syntax of PT(Pytorch) im…
参考:https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html#sphx-glr-beginner-blitz-tensor-tutorial-py WHAT IS PYTORCH 这是一个基于python的实现两种功能的科学计算包: 用于替换NumPy去使用GPUs的算力 一个提供了最大化灵活度和速度的深度学习搜索平台 Getting Started Tensors Tensors与NumPy的ndarrays相似,不同…
2017年12月25日15:06:44 官方文档:http://pytorch.org/docs/master/index.html 官方文档中文翻译:https://pytorch-cn.readthedocs.io/zh/latest/ 60分钟入门:http://www.pytorchtutorial.com/pytorch-60-minuites/ https://zhuanlan.zhihu.com/p/25572330 XavierLin的炼丹房:https://zhuanlan.z…
from:http://blog.csdn.net/VictoriaW/article/details/72872036 之前我学习了神经网络中权值初始化的方法 那么如何在pytorch里实现呢. PyTorch提供了多种参数初始化函数: torch.nn.init.constant(tensor, val) torch.nn.init.normal(tensor, mean=0, std=1) torch.nn.init.xavier_uniform(tensor, gain=1) 等等.详细…
原文地址:https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html 什么是pytorch? pytorch是一个基于python语言的的科学计算包,主要分为两种受众: 能够使用GPU运算取代NumPy 提供最大灵活度和速度的深度学习研究平台 开始 Tensors Tensors与numpy的ndarray相似,且Tensors能使用GPU进行加速计算. 创建5 * 3的未初始化矩阵: 创建并随机初始化矩阵: 创建一…
目录 Pytorch Leture 05: Linear Rregression in the Pytorch Way Logistic Regression 逻辑回归 - 二分类 Lecture07: How to make netural network wide and deep ? Lecture 08: Pytorch DataLoader Lecture 09: softmax Classifier part one part two : real problem - MNIST i…
一.Tensor Tensor是Pytorch中重要的数据结构,可以认为是一个高维数组.Tensor可以是一个标量.一维数组(向量).二维数组(矩阵)或者高维数组等.Tensor和numpy的ndarrays相似. import torch as t 构建矩阵:x = t.Tensor(m, n) 注意这种情况下只分配了空间,并没有初始化. 使用[0,1]均匀分布随机初始化矩阵:x = t.rand(m, n) 查看x的形状:x.size() 加法: (1)x + y (2)t.add(x, y…
现在对 CNN 有了一定的了解,同时在 GitHub 上找了几个 examples 来学习,对网络的搭建有了笼统地认识,但是发现有好多基础 pytorch 的知识需要补习,所以慢慢从官网 API进行学习吧. AUTOGRAD MECHANICS(自动求导机制) 这一部分做了解处理,不需要完全理解的明明白白的. Excluding subgraphs from backward 每一个 Tensor 变量都可以设置一个属性:requires_grad(默认参数 False),可以设置此参数排除向后…
看完了Deep Learning with Python,尝试了部分Keras的demo代码. 感觉Keras虽然容易上手,能够快速搭建出一个通用的模型,但是缺乏对底层的控制. 同时,在使用了自己编译的支持CUDA 10的tensorflow之后,总感觉有些不可控的bug出现:即使仅仅只是把demo代码改为自己的小工程,也有诸如load_model不能放在循环外(否则cudnn报错),第一次model.predict正确,但是循环做第二个predict就出错.在网上搜索了好几天,也没有找到问题的…
PyTorch发布一年团队总结:https://zhuanlan.zhihu.com/p/33131356?gw=1&utm_source=qq&utm_medium=social 官方教程: github:https://github.com/pytorch 官方文档:http://pytorch.org/docs/0.3.0/notes/autograd.html 官方tutorials:http://pytorch.org/tutorials/ 翻译的中文文档:http://pyto…
PyTorch torch.autograd模块 深度学习的算法本质上是通过反向传播求导数, PyTorch的autograd模块实现了此功能, 在Tensor上的所有操作, autograd都会为它们自动提供微分, 避免手动计算导数的复杂过程. autograd.Variable是autograd的核心类, 它简单封装了Tensor(最新版PyTorch已经将Variable和Tensor的API合并, 以后直接使用Tensor即可, 不要使用Variable了) backward: 一个Sc…
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/linear_regression.py 张量的操作 拼接 torch.cat() torch.cat(tensors, dim=0, out=None) 功能:将张量按照 dim 维度进行拼接 tensors: 张量序列 dim: 要拼接的维度 代码示例: t = torch.ones((2, 3)) t_0 = torch.cat([t, t], d…
PyTorch 的诞生 2017 年 1 月,FAIR(Facebook AI Research)发布了 PyTorch.PyTorch 是在 Torch 基础上用 python 语言重新打造的一款深度学习框架.Torch 是采用 Lua 语言为接口的机器学习框架,但是因为 Lua 语言较为小众,导致 Torch 学习成本高,因此知名度不高. PyTorch 的发展 2017 年 1 月正式发布 PyTorch. 2018 年 4 月更新 0.4.0 版,支持 Windows 系统,caffe2…
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/computational_graph.py 计算图 深度学习就是对张量进行一系列的操作,随着操作种类和数量的增多,会出现各种值得思考的问题.比如多个操作之间是否可以并行,如何协同底层的不同设备,如何避免冗余的操作,以实现最高效的计算效率,同时避免一些 bug.因此产生了计算图 (Computational Graph). 计算图是用来描述运算的有向无环…
PyTorch 的数据增强 我们在安装PyTorch时,还安装了torchvision,这是一个计算机视觉工具包.有 3 个主要的模块: torchvision.transforms: 里面包括常用的图像预处理方法 torchvision.datasets: 里面包括常用数据集如 mnist.CIFAR-10.Image-Net 等 torchvision.models: 里面包括常用的预训练好的模型,如 AlexNet.VGG.ResNet.GoogleNet 等 深度学习模型是由数据驱动的,…
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/module_containers.py 这篇文章来看下 PyTorch 中网络模型的创建步骤.网络模型的内容如下,包括模型创建和权值初始化,这些内容都在nn.Module中有实现. 网络模型的创建步骤 创建模型有 2 个要素:构建子模块和拼接子模块.如 LeNet 里包含很多卷积层.池化层.全连接层,当我们构建好所有的子模块之后,按照一定的顺序拼接起来…
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/nn_layers_others.py 这篇文章主要介绍了 PyTorch 中的池化层.线性层和激活函数层. 池化层 池化的作用则体现在降采样:保留显著特征.降低特征维度,增大 kernel 的感受野. 另外一点值得注意:pooling 也可以提供一些旋转不变性. 池化层可对提取到的特征信息进行降维,一方面使特征图变小,简化网络计算复杂度并在一定程度上避…
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/optimizer_methods.py https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/momentum.py 这篇文章主要介绍了 PyTorch 中的优化器,包括 3 个部分:优化器的概念.optimizer 的属性.optimizer 的方法. 优化器的概念 P…
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson6/bn_and_initialize.py https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson6/bn_in_123_dim.py https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson6/norma…
线性回归 主要内容包括: 线性回归的基本要素 线性回归模型从零开始的实现 线性回归模型使用pytorch的简洁实现 线性回归的基本要素 模型 为了简单起见,这里我们假设价格只取决于房屋状况的两个因素,即面积(平方米)和房龄(年).接下来我们希望探索价格与这两个因素的具体关系.线性回归假设输出与各个输入之间是线性关系: \[price=w_{area}*area+w_{age}*age+b \] 数据集 我们通常收集一系列的真实数据,例如多栋房屋的真实售出价格和它们对应的面积和房龄.我们希望在这个…
英文原文链接:http://cs231n.github.io/python-numpy-tutorial/ Numpy Numpy是Python中科学计算的核心库.它提供了一个高性能的多维数组对象,以及处理这些数组的工具.如果您已经熟悉MATLAB,那么在开始学习Numpy时,您可能会发现本教程非常有用. Arrays numpy数组是由所有类型相同的值组成的网格,由非负整数的元组索引.维数为数组的秩;数组的形状是一个整数元组,给出了数组在每个维度上的大小. 我们可以从嵌套的Python列表初始…
利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种. 假设构建一个网络模型如下: 卷积层-->Relu层-->池化层-->全连接层-->Relu层-->全连接层 首先导入几种方法用到的包: import torch import torch.nn.functional as F from collections import OrderedDict 第一种方法 # Method 1 --------------------------------------…
how to use pytorch 1.Tensor we can create a tensor just like creating a matrix the default type of a tensor is float import torch as t a = t.Tensor([[1,2],[3,4],[5,6]]) a tensor([[1., 2.], [3., 4.], [5., 6.]]) we can also change the datatype of a ten…