Hdoj 1905.Pseudoprime numbers 题解】的更多相关文章

Problem Description Fermat's theorem states that for any prime number p and for any integer a > 1, a^p == a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as…
Problem Description A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the first 20 humble numbers. Write a program to find and pri…
#include<stdio.h> #include<math.h> #define ll long long ll mod; bool Judge(int x) { ;i<sqrt(x+0.1);i++) { ) return true; } return false; } ll mult(ll q,ll n) { ll ret=q; ll ans=; ) { ) { ans*=ret; ans%=mod; } ret=(ret*ret)%mod; n>>=;…
Pseudoprime numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11336   Accepted: 4891 Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power…
题目传送门 /* 找规律/数位DP:我做的时候差一点做出来了,只是不知道最后的 is_one () http://www.cnblogs.com/crazyapple/p/3315436.html 数位DP:http://blog.csdn.net/libin56842/article/details/11580497 */ #include <cstdio> #include <iostream> #include <algorithm> #include <c…
题目连接 http://poj.org/problem?id=3641 Pseudoprime numbers Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but…
POJ3641 Pseudoprime numbers p是Pseudoprime numbers的条件: p是合数,(p^a)%p=a;所以首先要进行素数判断,再快速幂. 此题是大白P122 Carmichael Number 的简化版 /* * Created: 2016年03月30日 22时32分15秒 星期三 * Author: Akrusher * */ #include <cstdio> #include <cstdlib> #include <cstring&g…
Pseudoprime numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10903   Accepted: 4710 Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power…
Pseudoprime numbers Descriptions 费马定理指出,对于任意的素数 p 和任意的整数 a > 1,满足 ap = a (mod p) .也就是说,a的 p 次幂除以 p 的余数等于 a .p 的某些 (但不是很多) 非素数的值,被称之为以 a 为底的伪素数,对于某个 a 具有该特性.并且,某些 Carmichael 数,对于全部的 a 来说,是以 a为底的伪素数. 给定 2 < p ≤ 1000000000 且 1 < a < p ,判断 p 是否为以 …
Pseudoprime numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7954 Accepted: 3305 Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and…