在这一节,我们对上一个程序(Network1.py)进行了优化 3.改进神经网络的学习方法 (1)交叉熵代价函数的引入 Network1程序采用了S型神经元,S型神经元存在一个问题,当输出层神经元的输出接近0,或者1的时候,sigmoid函数曲线相当平导致此时sigmoid函数的导数很小,当选择二次代价函数时,输出误差δL=(aL-y)σ‘(zL),∂C/∂ωL,∂C/∂bL就会非常小,使得神经网络学习变得缓慢. 因此我们引入了交叉熵代价函数 当选择交叉熵代价函数时,δL= aL-y.解决了输出…