opencv: 线性拟合】的更多相关文章

opencv提供了fitline函数用于直线拟合,原型为: C++: void fitLine(InputArray points, OutputArray line, int distType, double param, double reps, double aeps) Python: cv2.fitLine(points, distType, param, reps, aeps) → line C: void cvFitLine(const CvArr* points, int dist…
转自:http://blog.itpub.net/12199764/viewspace-1743145/ 项目中有涉及趋势预测的工作,整理一下这3种拟合方法:1.线性拟合-使用mathimport mathdef linefit(x , y):    N = float(len(x))    sx,sy,sxx,syy,sxy=0,0,0,0,0    for i in range(0,int(N)):        sx  += x[i]        sy  += y[i]        s…
代码:使用tensorflow进行数据点的线性拟合操作 第一步:使用np.random.normal生成正态分布的数据 第二步:将数据分为X_data 和 y_data 第三步:对参数W和b, 使用tf.Variable()进行初始化,对于参数W,使用tf.random_normal([1], -1.0, 1.0)构造初始值,对于参数b,使用tf.zeros([1]) 构造初始值 第四步:使用W * X_data + b 构造出预测值y_pred 第五步:使用均分误差来表示loss损失值,即tf…
TensorFlow™ 是一个开放源代码软件库,用于进行高性能数值计算.借助其灵活的架构,用户可以轻松地将计算工作部署到多种平台(CPU.GPU.TPU)和设备(桌面设备.服务器集群.移动设备.边缘设备等).TensorFlow™ 最初是由 Google Brain 团队(隶属于 Google 的 AI 部门)中的研究人员和工程师开发的,可为机器学习和深度学习提供强力支持,并且其灵活的数值计算核心广泛应用于许多其他科学领域 接下来我们通过一个线性拟合的简单实例来说明一下 第一步,通过np.ran…
TensorFlow是咱们机器学习领域非常常用的一个组件,它在数据处理,模型建立,模型验证等等关于机器学习方面的领域都有很好的表现,前面的一节我已经简单介绍了一下TensorFlow里面基础的数据结构即:Tensor和Dataset: 这里咱们开始介绍TensorFlow的建模过程以及验证模型的一些简单方法.其实无论是sklearn还是TensorFlow,他们的模型建立过程都是相似的,都是经历columns类型声明,模型定义,数据训练,validation等等几个步骤.前面的几节内容我已经简单…
MeteoInfoLab提供一个线性拟合函数linregress,参数是参与拟合的两个数据序列,返回拟合的斜率.截距和相关系数.有了上述拟合参数可以用polyval函数生成拟合数据(直线).然后可以将数据.拟合线.公式等绘图. 脚本程序: fn = os.path.join('D:/KeyData/PMMUL/data/54500_PMMUL_DA.csv') if os.path.exists(fn): print fn tdata = readtable(fn, delimiter=',',…
目录 1. 载入数据 列解释Columns: 2. 数据分析 2.1 预处理 2.2 可视化 3. 训练模型 3.1 线性拟合 3.2 多项式回归(二次) 3.3 脊回归(Ridge Regression),又叫岭回归 3.4 Lasso 回归 3.5 支持向量回归 Support Vector Regression 3.6 决策树回归 Decision Tree Regression 3.7 随机森林回归 Random Forest Regression 4. 评估结果汇总 5. 可视化评估结…
Java 使用 CommonsMath3 的线性和非线性拟合实例,带效果图 例子查看 GitHub Gitee 运行src/main/java/org/wfw/chart/Main.java 即可查看效果 src/main/java/org/wfw/math 包下是简单的使用 版本说明 JDK:1.8 commons-math:3.6.1 一些基础知识 线性:两个变量之间存在一次方函数关系,就称它们之间存在线性关系.也就是如下的函数: \[f(x)=kx+b \] 非线性:除了线性其他的都是非线…
  带滚动条的线性混合示例:   #include "stdafx.h" #include<iostream> #include<thread> #include<vector> #include <opencv2/core/core.hpp> #include <opencv2/contrib/contrib.hpp> #include <opencv2/highgui/highgui.hpp> #include…
工业相机拍摄的图像中,由于摄像质量的限制,图像中的直线经过处理后,会表现出比较严重的锯齿.在这种情况下求取直线的倾角(其实就是直线的斜率),如果是直接选取直线的开始点和结束点来计算,或是用opencv自带的哈夫曼直线方法,都会引起较大的角度偏差,一般会达到好几度.误差这么大,显然达不到工控要求.后来尝试采取直线点集做最小二乘拟合,误差缩小到0.5以下.以下是算法的代码: //最小二乘拟合计算直线的倾角 int pointCount = pointVect.size(); if (pointCou…