from keras.datasets import mnist from keras.utils import np_utils from plot_image_1 import plot_image_1 from plot_prediction_1 import plot_image_labels_prediction_1 from show_train_history import show_train_history import numpy as np import pandas as…
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站点:www.skyseraph.com Overview 本文系“SkySeraph AI 实践到理论系列”第一篇,咱以AI界的HelloWord 经典MNIST数据集为基础,在Android平台,基于TensorFlow,实现CNN的手写数字识别.Code~ Practice Environmen…
记得第一次接触手写数字识别数据集还在学习TensorFlow,各种sess.run(),头都绕晕了.自从接触pytorch以来,一直想写点什么.曾经在2017年5月,Andrej Karpathy发表的一篇Twitter,调侃道:l've been using PyTorch a few months now, l've never felt better, l've more energy.My skin is clearer. My eye sight has improved.确实,使用p…
卷积:神经网络不再是对每个像素做处理,而是对一小块区域的处理,这种做法加强了图像信息的连续性,使得神经网络看到的是一个图像,而非一个点,同时也加深了神经网络对图像的理解,卷积神经网络有一个批量过滤器,通过重复的收集图像的信息,每次收集的信息都是小块像素区域的信息,将信息整理,先得到边缘信息,再用边缘信息总结从更高层的信息结构,得到部分轮廓信息,最后得到完整的图像信息特征,最后将特征输入全连接层进行分类,得到分类结果. 卷积: 经过卷积以后,变为高度更高,长和宽更小的图像,进行多次卷积,就会获得深…
主要内容: 1.基于CNN的mnist手写数字识别(详细代码注释) 2.该实现中的函数总结 平台: 1.windows 10 64位 2.Anaconda3-4.2.0-Windows-x86_64.exe (当时TF还不支持python3.6,又懒得在高版本的anaconda下配置多个Python环境,于是装了一个3-4.2.0(默认装python3.5),建议装anaconda3的最新版本,TF1.2.0版本已经支持python3.6!) 3.TensorFlow1.1.0 CNN的介绍可以…
目录 一.背景介绍 1.1 卷积神经网络 1.2 深度学习框架 1.3 MNIST 数据集 二.方法和原理 2.1 部署网络模型 (1)权重初始化 (2)卷积和池化 (3)搭建卷积层1 (4)搭建卷积层2 (5)搭建全连接层3 (6)搭建输出层 2.2 训练和评估模型 三.结果 3.1 训练过程 3.2 测试过程 四.讨论与结论 一.背景介绍 1.1 卷积神经网络 近年来,深度学习的概念非常火热.深度学习的概念最早由Hinton等人在2006年提出.基于深度置信网络(DBN),提出非监督贪心逐层…
keras框架的MLP手写数字识别MNIST 代码: # coding: utf-8 # In[1]: import numpy as np import pandas as pd from keras.utils import np_utils np.random.seed(10) # In[2]: from keras.datasets import mnist # In[3]: (x_train_image,y_train_label),(x_test_image,y_test_label…
前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型,常用层的Dense全连接层.Activation激活层和Reshape层.还有其他方法训练手写数字识别模型,可以基于pytorch实现的,<Pytorch实现基于卷积神经网络的面部表情识别(详细步骤)> 这篇就是基于pytorch实现,pytorch里也封装了mnist的数据集,实现方法应该类似…
上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即测试集和验证集 [2]: 引入 tensorflow 启动InteractiveSession(比session更灵活) [3]: 定义两个初始化w和b的函数,方便后续操作 [4]: 定义卷积和池化函数,这里卷积采用padding,使得 输入输出图像一样大,池化采取2x2,那么就是4格变一格 [5]…
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识别(二)--入门篇 基于tensorflow的MNIST手写数字识别(三)--神经网络篇 一.本文的意义 因为谷歌官方其实已经写了MNIST入门和深入两篇教程了,那我写这些文章又是为什么呢,只是抄袭?那倒并不是,更准确的说应该是笔记吧,然后用更通俗的语言来解释,并且补充更多,官方文章中没有详细展开的…
持久化的基于L2正则化和平均滑动模型的MNIST手写数字识别模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: Tensorflow1.4.0 python3.5.0 MNIST数据集将四个文件下载后放到当前目录下的MNIST_data文件夹下 定义模型框架与前向传播 import tensorflow as tf # 定义神经网络结构相关参数 INPUT_NODE = 784 OUTPUT_NODE = 10 LA…
MNIST手写数字识别 MNIST数据集介绍和下载:http://yann.lecun.com/exdb/mnist/   一.数据集介绍: MNIST是一个入门级的计算机视觉数据集 下载下来的数据集被分成两部分:60000行的训练数据集(mnist.train)和10000行的测试数据集(mnist.test)   二.TensorFlow实现MNIST手写数字识别 (1)构建一个只有输入层和输出层的简单神经网络模型,使用二次代价函数和梯度下降算法进行优化:代码如下: #TensorFlow实…
一:MNIST数据集    下载地址 MNIST是一个包含很多手写数字图片的数据集,一共4个二进制压缩文件 分别是test set images,test set labels,training set images,training set labels training set包括60000个样本,test set包括10000个样本. test set中前5000个样本来自原始的NISTtraining set,后5000个样本来自原始的NIST test set,因此,前5000个样本比…
之前我们讲了神经网络的起源.单层神经网络.多层神经网络的搭建过程.搭建时要注意到的具体问题.以及解决这些问题的具体方法.本文将通过一个经典的案例:MNIST手写数字识别,以代码的形式来为大家梳理一遍神经网络的整个过程. 一 .MNIST手写数字数据集介绍 MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一,通常这个数据集都会被作为深度学习的入门案例.数据集中的数字图片是由250个不同职业的人纯手写绘制,数据集获取的网址为:http://yann.lecun.com/…
MNIST手写数字识别教程 要开始带组内的小朋友了,特意出一个Pytorch教程来指导一下 [!] 这里是实战教程,默认读者已经学会了部分深度学习原理,若有不懂的地方可以先停下来查查资料 目录 MNIST手写数字识别教程 1 什么是MNIST? 2 使用Pytorch实现手写数字识别 2.1 任务目的 2.2 开发环境 2.3 实现流程 3 具体代码实现 3.1 数据预处理部分 3.1.1 初始化全局变量 3.1.2 构建数据集 3.2 训练部分 3.2.1 构建模型 3.2.2 构建迭代器与损…
深度学习之 mnist 手写数字识别 开始学习深度学习,先来一个手写数字的程序 import numpy as np import os import codecs import torch from PIL import Image lr = 0.01 momentum = 0.5 epochs = 10 def get_int(b): return int(codecs.encode(b, 'hex'), 16) def read_label_file(path): with open(pa…
mnist 手写数字识别三大步骤 1.定义分类模型2.训练模型3.评价模型 import tensorflow as tfimport input_datamnist = input_data.read_data_sets("MNIST_data/", one_hot=True)#1.定义分类模型x = tf.placeholder("float", [None, 784])W = tf.Variable(tf.zeros([784,10]))b = tf.Vari…
用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别 http://phunter.farbox.com/post/mxnet-tutorial1 用MXnet实战深度学习之二:Neural art http://phunter.farbox.com/post/mxnet-tutorial2…
一.MNIST数据集读取 one hot 独热编码独热编码是一种稀疏向量,其中:一个向量设为1,其他元素均设为0.独热编码常用于表示拥有有限个可能值的字符串或标识符优点:   1.将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点 2.机器学习算法中,特征之间距离的计算或相似度的常用计算方法都是基于欧式空间的 3.将离散型特征使用one_hot编码,会让特征之间的距离计算更加合理 import tensorflow as tf #MNIST数据集读取 import ten…
一.手写数字识别 现在就来说说如何使用神经网络实现手写数字识别. 在这里我使用mind manager工具绘制了要实现手写数字识别需要的模块以及模块的功能:  其中隐含层节点数量(即神经细胞数量)计算的公式(这只是经验公式,不一定是最佳值): m=n+l−−−−√+am=n+l+a  m=log2nm=log2⁡n  m=nl−−√m=nl  m: 隐含层节点数 n: 输入层节点数 l:输出层节点数 a:1-10之间的常数 本例子当中: 输入层节点n:784 输出层节点:10 (表示数字 0 ~…
手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化  投影  矩阵  目标定位  Matlab 手写数字图像识别简介: 手写阿拉伯数字识别是图像内容识别中较为简单的一个应用领域,原因有被识别的模式数较少(只有0到9,10个阿拉伯数字).阿拉伯数字笔画少并且简单等.手写阿拉伯数字的识别采用的方法相对于人脸识别.汉字识别等应用领域来说可以采用更为灵活的方法,例如基于规则的方法.基于有限状态自动机的方法.基于统计的方法和基于神…
代码: import torch import torch.nn as nn import torch.utils.data as Data import torchvision # 数据库模块 import matplotlib.pyplot as plt torch.manual_seed() # reproducible # Hyper Parameters EPOCH = # 训练整批数据多少次, 为了节约时间, 我们只训练一次 BATCH_SIZE = LR = 0.001 # 学习率…
Mnist手写数字识别 Tensorflow 任务目标 了解mnist数据集 搭建和测试模型 编辑环境 操作系统:Win10 python版本:3.6 集成开发环境:pycharm tensorflow版本:1.* 程序流程图 了解mnist数据集 mnist数据集:mnist数据集下载地址   MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来…
1. 运行它 1. 安装caffe请参考 http://www.cnblogs.com/xuanyuyt/p/5726926.html  此例子在官网 http://caffe.berkeleyvision.org/gathered/examples/mnist.html 2. 下载训练和测试数据.caffe识别leveldb或者lmdb格式的数据. 1)这里提供转换好的LEVELDB格式数据集,解压缩到mnist例子目录下 链接:http://pan.baidu.com/s/1gfjXteV…
# 一.载入数据 import tensorflow as tf import numpy as np #导入tensorflow提供的读取MNIST的模块 import tensorflow.examples.tutorials.mnist.input_data as input_data #读取MNIST数据 mnist = input_data.read_data_sets("MNIST_data/",one_hot=True) #1.构建输入层 x = tf.placehold…
代码 import torch from torchvision import datasets from torch.utils.data import DataLoader import torch.nn.functional as F import torch.optim as optim from torchvision import transforms #从torchvision中引入图像转换 #采用随机批量梯度下降,batch_size设为64 batch_size = 64 #用…
import numpy as np from sklearn.neural_network import MLPClassifier path = 'mnist.npz' f = np.load(path) X_train , y_train = f['x_train'], f['y_train'] X_test , y_test = f['x_test'], f['y_test'] X_train = X_train.astype('float32') X_test = X_test.ast…
整体代码: #数据读取 import tensorflow as tf import matplotlib.pyplot as plt import numpy as np from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/",one_hot=True) #定义待输入数据的占位符 #mnist中每张照片共有28*28=784个像…
老规矩,首先附上官方教程:http://caffe.berkeleyvision.org/gathered/examples/mnist.html 1.必要软件 因为Caffe中使用的是Linux才能运行的shell脚本,因此首先的安装 wget(将wget放入C:\windows\system32)和 Git 方能运行. 2.而后按照官方教程,首先进入caffe路径的根目录,而后打开cmd输入命令: ./data/mnist/get_mnist.sh 这个命令是通过打开/data/mnist目…
import time import keras from keras.utils import np_utils start = time.time() (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() rows = 28 cols = 28 CLASSES = 10 x_train = x_train.reshape(x_train.shape[0], rows, cols, 1) x_test =…