决策树模型在监督学习中非常常见,可用于分类(二分类.多分类)和回归.虽然将多棵弱决策树的Bagging.Random Forest.Boosting等tree ensembel 模型更为常见,但是“完全生长”决策树因为其简单直观,具有很强的解释性,也有广泛的应用,而且决策树是tree ensemble 的基础,值得好好理解.一般而言一棵“完全生长”的决策树包含,特征选择.决策树构建.剪枝三个过程,这篇文章主要是简单梳理比较ID3.C4.5.CART算法.<统计学习方法>中有比较详细的介绍. 一…
决策树是既可以作为分类算法,又可以作为回归算法,而且在经常被用作为集成算法中的基学习器.决策树是一种很古老的算法,也是很好理解的一种算法,构建决策树的过程本质上是一个递归的过程,采用if-then的规则进行递归(可以理解为嵌套的 if - else 的条件判断过程),关于递归的终止条件有三种情形: 1)当前节点包含的样本属于同一类,则无需划分,该节点作为叶子节点,该节点输出的类别为样本的类别 2)该节点包含的样本集合为空,不能划分 3)当前属性集为空,则无法划分,该节点作为叶子节点,该节点的输出…
data(churn)导入自带的训练集churnTrain和测试集churnTest 用id3.cart.C4.5和C5.0创建决策树模型,并用交叉矩阵评估模型,针对churn数据,哪种模型更合适 决策树模型 ID3/C4.5/CART算法比较 传送门 data(churn)为R自带的训练集,这个data(chun十分特殊) 先对data(churn)训练集和测试集进行数据查询 churnTest数据 奇怪之处,不能存储它的数据,不能查看数据的维度 ,不能查看数据框中每个变量的属性!! > da…
(1)C4.5算法的特点为: 输入变量(自变量):为分类型变量或连续型变量. 输出变量(目标变量):为分类型变量. 连续变量处理:N等分离散化. 树分枝类型:多分枝. 分裂指标:信息增益比率gain ratio(分裂后的目标变量取值变异较小,纯度高) 前剪枝:叶节点数是否小于某一阈值. 后剪枝:使用置信度法和减少-误差法. (2)CART算法的特点为: 输入变量(自变量):为分类型变量或连续型变量. 输出变量(目标变量):为分类型变量(或连续型:回归分析) 连续变量处理:N等分离散化. 树分枝类…
本文主要总结决策树中的ID3,C4.5和CART算法,各种算法的特点,并对比了各种算法的不同点. 决策树:是一种基本的分类和回归方法.在分类问题中,是基于特征对实例进行分类.既可以认为是if-then规则的集合,也可以认为是定义在特征空间和类空间上的条件概率分布. 决策树模型:决策树由结点和有向边组成.结点一般有两种类型,一种是内部结点,一种是叶节点.内部结点一般表示一个特征,而叶节点表示一个类.当用决策树进行分类时,先从根节点开始,对实例的某一特征进行测试,根据测试结果,将实例分配到子结点.而…
1.决策树 :监督学习 决策树是一种依托决策而建立起来的一种树. 在机器学习中,决策树是一种预测模型,代表的是一种对象属性与对象值之间的一种映射关系,每一个节点代表某个对象,树中的每一个分叉路径代表某个可能的属性值,而每一个叶子节点则对应从根节点到该叶子节点所经历的路径所表示的对象的值. 决策树仅有单一输出,如果有多个输出,可以分别建立独立的决策树以处理不同的输出. 优点: 决策树算法中学习简单的决策规则建立决策树模型的过程非常容易理解, 决策树模型可以可视化,非常直观 应用范围广,可用于分类和…
#################################Weka-J48(C4.5)################################# ##############################R语言:C4.5###################################### ###############################C5.0############################# data(churn) treeModel <- C5…
决策树模型 优点:高效简单.易于理解,可以处理不相关特征. 缺点:容易过拟合,训练集在特征上是完备的 决策树过程:特征选择.划分数据集.构建决策树.决策树剪枝 决策树选择最优的划分特征,将数据集按照最优划分特征的取值划分成不同的子集,然后依次对子集重复上述步骤,指导子集中数据都归属于同一个类别,或者没有特征可以再划分了. 特征选择通常有三种方法: ID3——信息信息 C4.5——信息增益比 CART——基尼指数 一.信息增益 首先信息论中熵表示随机变量不确定性度量,熵越大,不确定性越大. 熵的定…
目录 树模型原理 ID3 C4.5 CART 分类树 回归树 树创建 ID3.C4.5 多叉树 CART分类树(二叉) CART回归树 ID3 C4.5 CART 特征选择 信息增益 信息增益比 基尼不纯度 连续值处理 只能处理离散值 二分 二分 树形式 多叉 多叉 二叉树 剪枝 无 有 有 适用问题 分类 分类 分类/回归 关于特征选择方式与熵? 熵反映了信息量大小(混乱程度),熵越大信息量越大.我们的目标是熵减少方向 树模型原理 ID3 (1)计算数据集D 的经验熵 H(D) \[H(D)=…
单一标准的决策树:会根每维特征对预测结果的影响程度进行排序,进而决定不同特征从上至下构建分类节点的顺序.Random Forest Classifier:使用相同的训练样本同时搭建多个独立的分类模型,然后通过投票的方式,以少数服从多数的原则做出最终的分类决策.随机选取特征.GBDT:按照一定次序搭建多个分类模型,模型之间存在依赖关系,一般,每一个后续加入的模型都需要对集成模型的综合性能有所贡献,最终期望整合多个弱分类器,搭建出具有更强分类能力的模型. #coding=utf8 # 导入panda…