所谓均值滤波实际上就是用均值替代原图像中的各个像素值. 均值滤波的方法是:对待处理的当前像素,选择一个模板,该模板为其近邻的若干像素组成,用模板中的像素的均值来替代原像素. 优点:算法简单,计算速度快. 缺点:在降低噪声时使图像产生模糊. matla程序: [width,height]=size(result1); n=; a=ones(n,n); x1=double(result1); x2=x1; :(height-n)+ :width-n+ c=x1(i:i+(n-),j:j+(n-)).…
在matlab中用dicomread读取dicom文件后,生成一个MxN矩阵(对应图像像素个数),每个像素灰度数据是int16格式 但是bmp图像灰度是int8格式的(灰度范围0~255),所以若想把dicom图像存储为bmp图像做后续处理,需要将16位的dicom灰度数据映射为8位的灰度数据. 采用的方法即医学图像处理中常见的加窗处理. 实例代码如下: img=imadjust(img_raw,[;]); %调整灰度范围 img= low=min(min(img)); high=max(max…
开始之前 再说上一篇文章中, 我们想按照噪声产生, 然后将降噪的, 但是限于篇幅, 我就放在这一篇里面了, 说起图像的噪声问题就又回到了我们上一章的内容, 把噪声当作信号处理, 实际上数字图像处理实际上也是在进行数字信号的处理过程, 我们这一章就是将滤除信号的过程, 根据上一章的方式, 我们对图像添加噪声, 然后计算 PSNR 与 SSIM 参数, 然后通过降噪, 再从新计算参数值, 比较我们算法的效果 对比我们的算法效果, 看正文吧 目录 目录 开始之前 目录 正文 生成噪声图像 传统图像降噪…
基于MATLAB的中值滤波均值滤波以及高斯滤波的实现 作者:lee神 1.   背景知识 中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值. 中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点. 方法是用某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数…
在图像采集和生成中会不可避免的引入噪声,图像噪声是指存在于图像数据中的不必要的或多余的干扰信息,这对我们对图像信息的提取造成干扰,所以要进行去噪声处理,常见的去除噪声的方法有均值滤波.中值滤波.高斯滤波等,这一篇要实现的是均值滤波. 均值滤波的方法是将图像数据生成3x3的矩阵或是5x5等其他模板,然后对这个矩阵模板进行处理.在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标象素为中心的周围 8 个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来…
来源: 1.https://ww2.mathworks.cn/help/images/ref/fspecial.html?searchHighlight=fspecial&s_tid=doc_srchtitle#d117e81237 2.https://www.cnblogs.com/leegod/p/8202731.html 简单的原理: 基于MATLAB的中值滤波均值滤波以及高斯滤波的实现 作者:lee神 1.   背景知识 中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某…
MATLAB程序:用FCM分割脑图像 作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 脑图像基础知识请看:脑图像:FCM算法介绍请看:聚类——FCM:数据来源:BrainWeb: Simulated Brain Database,只选取脑图像中的0.1.2.3类,其余类别设为0.本文用到的数据:Simulated Brain Database 1. MATLAB程序 FCM_image_main.m function [accuracy,iter_F…
原文:Win8Metro(C#)数字图像处理--2.9图像均值滤波  [函数名称] 图像均值滤波函数MeanFilterProcess(WriteableBitmap src) [函数代码]        ///<summary>        /// Mean filter process.        ///</summary>        ///<param name="src">Source image</param>  …
void CCVMFCView::OnBlurSmooth()//邻域均值滤波 { IplImage* in; in = workImg; IplImage* out = cvCreateImage(cvGetSize(in),IPL_DEPTH_8U,workImg->nChannels); cvSmooth(in,out,CV_BLUR,3,workImg->nChannels);  //  简单平均 m_dibFlag=imageReplace(out,&workImg); In…
本篇文章中,我们一起仔细探讨了OpenCV图像处理技术中比较热门的图像滤波操作.图像滤波系列文章浅墨准备花两次更新的时间来讲,此为上篇,为大家剖析了"方框滤波","均值滤波","高斯滤波"三种常见的邻域滤波操作.而作为非线性滤波的"中值滤波"和"双边滤波",我们下次再分析. 因为文章很长,如果详细啃的话,或许会消化不良.在这里给大家一个指引,如果是单单想要掌握这篇文章中讲解的OpenCV线性滤波相关的三个函…