1016: [JSOI2008]最小生成树计数】的更多相关文章

不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ------------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm>   using namespace s…
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6200  Solved: 2518[Submit][Status][Discuss] Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的 最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生 成树可能很多,所以你只需要输出方案数对3101…
1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了. Input 第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数.每个节点用1~n的整数编号.接下来的m…
最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对$31011$的模就可以了. 输入 第一行两个数$n$和$m$,其中$1\le n\le 100,1\le m\le 1000$,分别表示无向图的节点数和边数.每个节点用$1 \ldots n$的整数编号.接下来$m$行,每行三个整数$a,…
最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树 可能很多,所以你只需要输出方案数对31011的模就可以了. Input 第 一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数.每个节点用1~n的整数编号.接下来的m行,每行包含两个整数:a,…
http://www.lydsy.com/JudgeOnline/problem.php?id=1016 想也想不到QAQ 首先想不到的是:题目有说,具有相同权值的边不会超过10条. 其次:老是去想组合计数怎么搞.......于是最sb的暴力都不会了.. 所以这题暴力搞就行了orz 依次加边,每一种边的方案数乘起来就是方案了. 注意并查集不能路径压缩,否则在计数的时候会waQAQ因为并查集的路径压缩是不可逆的QAQ #include <cstdio> #include <cstring&…
题目链接:BZOJ - 1016 题目分析 最小生成树的两个性质: 同一个图的最小生成树,满足: 1)同一种权值的边的个数相等 2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性相等 这样,先做一次Kruscal求出每种权值的边的条数,再按照权值从小到大,对每种边进行 DFS, 求出这种权值的边有几种选法. 最后根据乘法原理将各种边的选法数乘起来就可以了. 特别注意:在DFS中为了在向下DFS之后消除决策影响,恢复f[]数组之前的状态,在DFS中调用的Find()函数不能路…
题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性质,可以先求一个MST,再枚举每一组边(权值相同的看做一组边),对每组边DFS(\(O(2^{10})\)),若某种方案连通性同MST相同(记录连通块个数即可).则sum++. 最后根据乘法原理,最后的答案即为所有sum相乘. \(Solution2\) 容易想到MatrixTree定理. 按边权从…
总结:此类题需要耐心观察规律,大胆猜想,然后证明猜想,得到有用的性质,然后解答. 简单的说:找隐含性质. 传送门:http://61.187.179.132/JudgeOnline/problem.php?id=1016 题意:n个点m条边的图,问其最小生成树的个数(只要有一条边不同,就算不同).n<100, m<1000 权值c < 10^9, 其中权相同的边的数量不会超过10条. 思路: 经过观察思考,得到以下结论: 任意两个最小生成树,将其所有边的边长排序后,将得到完全相同的结果.…
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了.Input 第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数.每个节点用1~n的整数编号.接下来的m行,每行包含两个整数:a, b, c,表示节点a,…