Spark算子--mapValues】的更多相关文章

转载请标明出处http://www.cnblogs.com/haozhengfei/p/ccc9d6b5c46ac7209c1e104bd219bfb4.html mapValues--Transformation类算子 代码示例  …
http://lxw1234.com/archives/2015/07/363.htm Spark算子:RDD基本转换操作(1)–map.flagMap.distinct Spark算子:RDD创建操作 Spark算子:RDD基本转换操作(2)–coalesce.repartition Spark算子:RDD基本转换操作(3)–randomSplit.glom Spark算子:RDD基本转换操作(4)–union.intersection.subtract Spark算子:RDD基本转换操作(5…
spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key-Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Key-Value型的数据. 3.Action算子,这类算子会触发SparkContext提交作业. 一.Value型Transformation算子 1)map val a = sc.parallelize(List() val…
Spark算子总结(带案例) spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key-Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Key-Value型的数据. 3.Action算子,这类算子会触发SparkContext提交作业. 一.Value型Transformation算子 1)map val a = sc.parallel…
一.spark的算子分类 转换算子和行动算子 转换算子:在使用的时候,spark是不会真正执行,直到需要行动算子之后才会执行.在spark中每一个算子在计算之后就会产生一个新的RDD. 二.在编写spark程序的时候,会遇到可以通过spark算子完成的操作,同时,scala原生语法也可以完成的操作是,两者的区别是什么? scala在执行语句的时候是在JVM进程执行,所有的计算全是在JVM中通过相应的调度完成. 而spark的RDD执行时,是通过分布式计算的方式完成. 三.转换算子的使用 map算…
  UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现   测试数据 java代码 package com.hzf.spark.study; import java.util.Map; import java.util.Set; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.jav…
UserView--第一种方式set去重,基于Spark算子的java代码实现 测试数据 java代码 package com.hzf.spark.study; import java.util.HashSet; import java.util.Iterator; import java.util.Set; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.ap…
前言 传统的RDD相对于mapreduce和storm提供了丰富强大的算子.在spark慢慢步入DataFrame到DataSet的今天,在算子的类型基本不变的情况下,这两个数据集提供了更为强大的的功能.但也有些功能暂时无法使用.比如reduceByKey,在DataFrame和DataSet里是没有的.所以觉得有必要做一些梳理. 准备工作 测试数据,json格式: { "DEVICENAME": "test1", "LID": 17050131…
Spark算子实战应用 数据集 :http://grouplens.org/datasets/movielens/ MovieLens 1M Datase 相关数据文件 : users.dat ---UserID::Gender::Age::Occupation::Zip-code movies.dat --- MovieID::Title::Genres ratings.dat ---UserID::MovieID::Rating::Timestamp SogouQ.mini 完成以下业务需求…
Spark 是大数据领域的一大利器,花时间总结了一下 Spark 常用算子,正所谓温故而知新. Spark 算子按照功能分,可以分成两大类:transform 和 action.Transform 不进行实际计算,是惰性的,action 操作才进行实际的计算.如何区分两者?看函数返回,如果输入到输出都是RDD类型,则认为是transform操作,反之为action操作. 准备 准备阶段包括spark-shell 界面调出以及数据准备.spark-shell 启动命令如下: bin/spark-s…
常用transformation及action介绍,spark算子详解 一.常用transformation介绍 1.1 transformation操作实例 二.常用action介绍 2.1 action操作实例 三.spark算子详解 3.1弹性分布式数据集 (RDD) 3.2Spark 算子大致可以分为以下两类 3.2.1Transformation 变换/转换算子:这种变换并不触发提交作业,完成作业中间过程处理 3.2.2Action 行动算子:这类算子会触发 SparkContext…
摘要  1.使用reduceByKey/aggregateByKey替代groupByKey 2.使用mapPartitions替代普通map 3.使用foreachPartitions替代foreach 4.使用filter之后进行coalesce操作 5.使用repartitionAndSortWithinPartitions替代repartition与sort类操作 6.使用broadcast使各task共享同一Executor的集合替代算子函数中各task传送一份集合 7.使用相同分区方…
1:Zip算子 def zip[U](other: RDD[U])(implicit arg0: ClassTag[U]): RDD[(T, U)] 将两个RDD做zip操作,如果当两个RDD分区数目不一样的话或每一个分区数目不一样的话则会异常. 例如: val rdd1 = sc.parallelize(Array(1,2,3,4,5,6),2) val rdd2 = sc.parallelize(Array(1,2,3,4,5,6),3) rdd.zip(rdd1).collect 异常信息…
package com.dingxin.datainit import org.apache.log4j.{Level, Logger} import org.apache.spark.sql.SparkSession /** * Created by zhen on 2018/12/18. */ object RDDTransform { def main(args: Array[String]) { Logger.getLogger("org.apache.spark").setL…
map map(func) Return a new distributed dataset formed by passing each element of the source through a function func. 返回通过函数func传递源的每个元素形成的新的分布式数据集.通过函数得到一个新的分布式数据集. var rdd = session.sparkContext.parallelize(1 to 10) rdd.foreach(println) println("===…
案例 aggregateByKey算子其实相当于是针对不同“key”数据做一个map+reduce规约的操作. 举一个简单的在生产环境中的一段代码 有一些整理好的日志字段,经过处理得到了RDD类型为(String,(String,String))的List格式结果,其中各个String代表的是:(用户名,(访问时间,访问页面url)) 同一个用户可能在不同的时间访问了不同或相同的页面,为了合并同一个用户的访问行为,写了下面这段代码,用到aggregateByKey. val data = sc.…
在spark中,reduceByKey.groupByKey和combineByKey这三种算子用的较多,结合使用过程中的体会简单总结: 我的代码实践:https://github.com/wwcom614/Spark •reduceByKey 用于对每个key对应的多个value进行merge操作,最重要的是它能够在本地先进行merge操作,并且merge操作可以通过函数自定义: •groupByKey 也是对每个key进行操作,但只生成一个sequence,groupByKey本身不能自定义…
别的不说先上官网: action 这些算子中需要注意: 1.reduce 和 reduceByKey 虽说都有reduce,但是一个是action级别,一个是transformation级别,速度上会有很大的差异 2.groupBy的使用如下 groupBy :将元素通过函数生成相应的 Key,数据就转化为 Key-Value 格式,之后将 Key 相同的元素分为一组. val a = sc.parallelize(1 to 9, 3) a.groupBy(x => { if (x % 2 ==…
ation算子通过sparkContext执行提交作业的runJob,触发rdd的DAG执行 (foreach) foreach(f) 会对rdd中的每个函数进行f操作,下面的f操作就是打印输出没有元素  saveAsTextFile 将rdd保存到hdfs指定的路径,将rdd中每一个分区保存到hdfs上的block saveAsObjectFile 将rdd中每10个元素组成一个array,然后将这个array序列化,映射为(null,bytesWritable(y)) 写入hdfs为Sequ…
1.collect算子 *使用foreachACTION操作 ,collect在远程集群中遍历RDD的元素 *使用collect操作,将分布式在远程集群中的数据拉取到本地 *这种方式不建议使用,如果数据量大,会使用大量 的网络带宽 *这种方式不建议使用. package kw.test.action; import java.util.Arrays; import java.util.Iterator; import java.util.List; import org.apache.spark…
1.spark的算子分为转换算子和Action算子,Action算子将形成一个job,转换算子RDD转换成另一个RDD,或者将文件系统的数据转换成一个RDD 2.Spark的算子介绍地址:http://spark.apache.org/docs/2.3.0/rdd-programming-guide.html 3.Spark操作基本步骤[java版本,其他语言可以根据官网的案例进行学习] (1)创建配置文件,将集群的运行模式设置好,给作业起一个名字,可以使用set方法其他配置设入. SparkC…
package spark_example01; import java.io.File; import java.io.FileWriter; import java.io.IOException; import java.util.Random; /** */ public class PeopleInfoFileGenerator { public static void main(String[] args){ File file = new File("/Users/xls/Deskt…
map 将一个RDD中的每个数据项,通过map中的函数映射变为一个新的元素. 输入分区与输出分区一对一,即:有多少个输入分区,就有多少个输出分区. flatMap 属于Transformation算子,第一步和map一样,最后将所有的输出分区合并成一个. 使用flatMap时候需要注意:flatMap会将字符串看成是一个字符数组. distinct 对RDD中的元素进行去重操作. coalesce def coalesce(numPartitions: Int, shuffle: Boolean…
Aggregate函数 一.源码定义 /** * Aggregate the elements of each partition, and then the results for all the partitions, using * given combine functions and a neutral "zero value". This function can return a different result * type, U, than the type of t…
一.在聚合前在map端先预聚合 使用reduceByKey/aggregateByKey代替groupByKey 二.一次处理一个分区的数据,不过要注意一个分区里的数据不要太大,不然会报oom * 使用mapPartitions代替map * 使用foreachPartitions代替foreach 三.使用重分区 * 在过滤后使用算子coalesce(),避免过滤后可能产生的数据倾斜 四.对多次使用的rdd进行持久化,增加rdd的复用性. 每个rdd都会有一个血缘链,如果某个算子的上游rdd能…
0.parallelize 1.map 2.mapValues 3.flatMap 4.mapPartitions 5.mapPartitionsWithIndex 6.filter 7.reduce 8.reduceByKey 9.groupBy 10.groupByKey 11.partitionBy 12.foreach 13.foreachPartition 14.count 15.collect 16.saveAsTextFile 17.combineByKey 18.persist…
一.基本介绍 rdd.aggregateByKey(3, seqFunc, combFunc) 其中第一个函数是初始值 3代表每次分完组之后的每个组的初始值. seqFunc代表combine的聚合逻辑 每一个mapTask的结果的聚合成为combine combFunc reduce端大聚合的逻辑 ps:aggregateByKey默认分组 二.代码 from pyspark import SparkConf,SparkContext from __builtin__ import str c…
假设我们有一组个人信息,我们针对人的性别进行分组统计,并进行统计每个分组中的记录数. scala> val people = List(("male", "Mobin"), ("male", "Kpop"), ("female", "Lucy"), ("male", "Lufei"), ("female", "A…
def partitionBy(partitioner: Partitioner): RDD[(K, V)] 该函数根据partitioner函数生成新的ShuffleRDD,将原RDD重新分区. scala> var rdd1 = sc.makeRDD(Array((1,"A"),(2,"B"),(3,"C"),(4,"D")),2) rdd1: org.apache.spark.rdd.RDD[(Int, Strin…
1.map 一条一条读取 def map(): Unit ={ val list = List("张无忌", "赵敏", "周芷若") val listRDD = sc.parallelize(list) val nameRDD = listRDD.map(name => "Hello " + name) nameRDD.foreach(name => println(name)) } 2.flatMap 扁平化…