POJ 3741 Raid (平面最近点对)】的更多相关文章

$ POJ~3741~Raid $ (平面最近点对) $ solution: $ 有两种点,现在求最近的平面点对.这是一道分治板子,但是当时还是想了很久,明明知道有最近平面点对,但还是觉得有点不对劲.基本算法专题出最近平面点对?怎么感觉我 $ Noip $ 凉了? 这题不会是个坑吧.... 嗯,不瞎扯了.来回顾一下分治求平面点对的过程,首先将点按横坐标排序,然后整个区间不断往下二分,回溯的时候归并排序(这其实我来再写一次题解的原因,以前写的都是快排,但必须承认归并的复杂度才是最稳最准的).我们将…
平面最近点对 平面最近点对算是一个经典的问题了,虽然谈不上是什么专门的算法,但是拿出问题模型好好分析一个是有必要的. 给定\(n\)个二元组\((x,y)\),代表同一平面内的\(n\)个点的坐标,求\(\min\{dis_{(p,q)}\}\). 其中,定义\(dis_{(p,q)}\)代表两点的直线距离,即\(dis_{(p,q)}=\sqrt{(p_x-q_x)^2+(p_y-q_y)^2}\). \(Solution\ 1:\) 暴力求解,\(O(n^2)\)枚举两点,直接计算更新答案.…
题目链接:http://poj.org/problem?id=3714 分治算法修改该为两个点集的情况就可以了,加一个标记... //STATUS:C++_AC_2094MS_4880KB #include <functional> #include <algorithm> #include <iostream> //#include <ext/rope> #include <fstream> #include <sstream> #…
Description After successive failures in the battles against the Union, the Empire retreated to its last stronghold. Depending on its powerful defense system, the Empire repelled the six waves of Union's attack. After several sleepless nights of thin…
题目链接:https://vjudge.net/problem/POJ-3714 题意:给定两个点集,求最短距离. 思路:在平面最近点对基础上加了个条件,我么不访用f做标记,集合1的f为1,集合2的f为-1,那么求两个点的距离时,如果a.f*b.f=-1时计算距离,否则乘积为1的话返回inf.其它就和hdoj1007一样了. AC代码: #include<cstdio> #include<algorithm> #include<cmath> #include<cs…
$AcWing$ $Sol$ 平面最近点对板子题,注意要求的是两种不同的点之间的距离. $Code$ #include<bits/stdc++.h> #define il inline #define Rg register #define go(i,a,b) for(Rg int i=a;i<=b;++i) #define yes(i,a,b) for(Rg int i=a;i>=b;--i) #define mem(a,b) memset(a,b,sizeof(a)) #def…
Description After successive failures in the battles against the Union, the Empire retreated to its last stronghold. Depending on its powerful defense system, the Empire repelled the six waves of Union's attack. After several sleepless nights of thin…
平面最近点对,即平面中距离最近的两点 分治算法: int SOLVE(int left,int right)//求解点集中区间[left,right]中的最近点对 { double ans; //answer 0)    调用前的预处理:对所有点排序,以x为第一关键词y为第二关键字 , 从小到大; 1)    将所有点按x坐标分成左右两部分; /*      分析当前集合[left,right]中的最近点对,有两种可能: 1. 当前集合中的最近点对,点对的两点同属于集合[left,mid]或同属…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4631 数据是随机的,没有极端数据,所以可以分段考虑,最小值是一个单调不增的函数,然后每次分治算平面最近点对就可以了... //STATUS:G++_AC_10390MS_23804KB #include <functional> #include <algorithm> #include <iostream> //#include <ext/rope> #inc…
Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings are pitched at some toys, with all the toys encircled awarded.In the field of Cyberground, the position of each toy is fixed, and the ring is carefull…