不同于其它的机器学习模型,EM算法是一种非监督的学习算法,它的输入数据事先不需要进行标注.相反,该算法从给定的样本集中,能计算出高斯混和参数的最大似然估计.也能得到每个样本对应的标注值,类似于kmeans聚类(输入样本数据,输出样本数据的标注).实际上,高斯混和模型GMM和kmeans都是EM算法的应用. 在opencv3.0中,EM算法的函数是trainEM,函数原型为: bool trainEM(InputArray samples, OutputArray logLikelihoods=n…