1.union(otherDataSet) 作用:求并集. 对源 RDD 和参数 RDD 求并集后返回一个新的 RDD scala> val rdd1 = sc.parallelize(1 to 6) scala> val rdd2 = sc.parallelize(4 to 10) scala> val rdd3 = rdd1.union(rdd2) scala> rdd3.collect res1: Array[Int] = Array(1, 2, 3, 4, 5, 6, 4,…
一.前述 Spark中默认有两大类算子,Transformation(转换算子),懒执行.action算子,立即执行,有一个action算子 ,就有一个job. 通俗些来说由RDD变成RDD就是Transformation算子,由RDD转换成其他的格式就是Action算子. 二.常用Transformation算子 假设数据集为此: 1.filter      过滤符合条件的记录数,true保留,false过滤掉. Java版: package com.spark.spark.transform…
依赖 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.11</artifactId> <version>2.1.3</version> </dependency> RDD转化成DataFrame:通过StructType指定schema package com.zy.sparksql import org.apac…
大多数的 Spark 操作可以用在任意类型的 RDD 上, 但是有一些比较特殊的操作只能用在key-value类型的 RDD 上. 这些特殊操作大多都涉及到 shuffle 操作, 比如: 按照 key 分组(group), 聚集(aggregate)等. 在 Spark 中, 这些操作在包含对偶类型(Tuple2)的 RDD 上自动可用(通过隐式转换). object RDD { implicit def rddToPairRDDFunctions[K, V](rdd: RDD[(K, V)]…
1. map(func) 作用: 返回一个新的 RDD, 该 RDD 是由原 RDD 的每个元素经过函数转换后的值而组成. 就是对 RDD 中的数据做转换. 创建一个包含1-10的的 RDD,然后将每个元素*2形成新的 RDD scala > val rdd1 = sc.parallelize(1 to 10) // 得到一个新的 RDD, 但是这个 RDD 中的元素并不是立即计算出来的 scala> val rdd2 = rdd1.map(_ * 2) 2.mapPartitions(fun…
一:准备数据源     在项目下新建一个student.txt文件,里面的内容为: ,zhangsan, ,lisi, ,wanger, ,fangliu, 二:实现 Java版: 1.首先新建一个student的Bean对象,实现序列化和toString()方法,具体代码如下: import java.io.Serializable; @SuppressWarnings("serial") public class Student implements Serializable {…
Spark Core 1. 概述 Spark 是一种基于内存的快速.通用.可扩展的大数据分析计算引擎 1.1 Hadoop vs Spark 上面流程对应Hadoop的处理流程,下面对应着Spark的处理流程 Hadoop Hadoop 是由 java 语言编写的,在分布式服务器集群上存储海量数据并运行分布式 分析应用的开源框架 作为 Hadoop 分布式文件系统,HDFS 处于 Hadoop 生态圈的最下层,存储着所有的 数 据 , 支持着 Hadoop的所有服务 . 它的理论基础源于Goog…
Day1111 Spark任务调度 Spark几个重要组件 Spark Core RDD的概念和特性 生成RDD的两种类型 RDD算子的两种类型 算子练习 分区 RDD的依赖关系 DAG:有向无环图 任务提交 缓存 checkPoint 自定义排序 自定义分区器 自定义累加器 广播变量 Spark Shuffle过程 Spark优化过程 SparkSQL 集成Hive 一.Spark Core 1 Spark任务调度: |->:standalone |->:local |->:Yarn…
第0章 预备知识0.1 Scala0.1.1 Scala 操作符0.1.2 拉链操作0.2 Spark Core0.2.1 Spark RDD 持久化0.2.2 Spark 共享变量0.3 Spark SQL0.3.1 RDD.DataFrame 与 DataSet0.3.2 DataSet 与 RDD 互操作0.3.3 RDD.DataFrame 与 DataSet 之间的转换0.3.4 用户自定义聚合函数(UDAF)0.3.5 开窗函数0.4 Spark Streaming0.4.1 Dst…
处理数据类型为Value型的Transformation算子能够依据RDD变换算子的输入分区与输出分区关系分为下面几种类型: 1)输入分区与输出分区一对一型 2)输入分区与输出分区多对一型 3)输入分区与输出分区多对多型 4)输出分区为输入分区子集型 5)另一种特殊的输入与输出分区一对一的算子类型:Cache型. Cache算子对RDD分区进行缓存 输入分区与输出分区一对一型 (1)map 将原来RDD的每一个数据项通过map中的用户自己定义函数f映射转变为一个新的元素. 源代码中的map算子相…
Spark-RDD编程常用转换算子代码实例 Spark rdd 常用 Transformation 实例: 1.def map[U: ClassTag](f: T => U): RDD[U]   将函数应用于RDD的每一元素,并返回一个新的RDD package top.ruandb import org.apache.spark.{SparkConf, SparkContext} object RddTest extends App{ val sparkConf = new SparkConf…
1. Spark的RDD RDD(Resilient Distributed Datasets),弹性分布式数据集,是对分布式数据集的一种抽象. RDD所具备5个主要特性: 一组分区列表 计算每一个数据分片的函数 RDD上的一组依赖 对于Key Value 对的RDD,会有一个Partitioner, 这是数据的分区器,控制数据分区策略和数量 一组Preferred Location信息(如HDFS 上的数据块地址) 上图是一个简单的CoGroupedRDD满足了RDD 5个特性   2. RD…
一. 二.案例:详见代码.针对案例提出的6个问题: 假设要针对整个网站的历史数据进行处理, 量有 1T, 如何处理? 放在集群中, 利用集群多台计算机来并行处理 如何放在集群中运行? 简单来讲, 并行计算就是同时使用多个计算资源解决一个问题, 有如下四个要点 要解决的问题必须可以分解为多个可以并发计算的部分 每个部分要可以在不同处理器上被同时执行 需要一个共享内存的机制 需要一个总体上的协作机制来进行调度 如果放在集群中的话, 可能要对整个计算任务进行分解, 如何分解? 概述 对于 HDFS 中…
摘要: RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集RDD有两种操作算子:         Transformation(转换):Transformation属于延迟计算,当一个RDD转换成另一个RDD时并没有立即进行转换,仅仅是记住       了数据集的逻辑操作         Ation(执行):触发Spark作业的运行,真正触发转换算子的计算 本系列主要讲解Spark中常用的函数操作:   …
一.Transformation spark常用的Transformation算子如下表: Transformation算子 Meaning(含义) map(func) 对原RDD中每个元素运用 func 函数,并生成新的RDD filter(func) 对原RDD中每个元素使用func 函数进行过滤,并生成新的RDD flatMap(func) 与 map 类似,但是每一个输入的 item 被映射成 0 个或多个输出的 items( func 返回类型需要为 Seq ). mapPartiti…
一.Transformation spark 常用的 Transformation 算子如下表: Transformation 算子 Meaning(含义) map(func) 对原 RDD 中每个元素运用 func 函数,并生成新的 RDD filter(func) 对原 RDD 中每个元素使用func 函数进行过滤,并生成新的 RDD flatMap(func) 与 map 类似,但是每一个输入的 item 被映射成 0 个或多个输出的 items( func 返回类型需要为 Seq ).…
0. 零碎概念 (1) 这个有点疑惑,有可能是错误的. (2) 此处就算地址写错了也不会报错,因为此操作只是读取数据的操作(元数据),表示从此地址读取数据但并没有进行读取数据的操作 (3)分区(有时间看HaDoopRDD这个方法的源码,用来计算分区数量的) 物理切片:实际将数据切分开,即以前的将数据分块(每个数据块的存储地址不一样),hdfs中每个分块的大小为128m 逻辑切片:指的是读取数据的时候,将一个数据逻辑上分成多块(这个数据在地址上并没有分开),即以偏移量的形式划分(各个Task从某个…
1.错误描述 TypeError: Error #1034: 强制转换类型失败:无法将 mx.controls::DataGrid@9aa90a1 转换为 spark.core.IViewport. at mx.binding::Binding/defaultDestFunc()[E:\dev\4.0.0\frameworks\projects\framework\src\mx\binding\Binding.as:270] at Function/http://adobe.com/AS3/20…
1:什么是Spark的RDD??? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 2:RDD的属性: a.一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片都会被一个…
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark-1.6 一.RDDRDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工…
Spark学习之路 (三)Spark之RDD   https://www.cnblogs.com/qingyunzong/p/8899715.html 目录 一.RDD的概述 1.1 什么是RDD? 1.2 RDD的属性 1.3 WordCount粗图解RDD 二.RDD的创建方式 2.1 通过读取文件生成的 2.2 通过并行化的方式创建RDD 2.3 其他方式 三.RDD编程API 3.1 Transformation 3.2 Action 3.3 Spark WordCount代码编写 3.…
Spark Core    DAG概念        有向无环图        Spark会根据用户提交的计算逻辑中的RDD的转换(变换方法)和动作(action方法)来生成RDD之间的依赖关系,同时这个计算链也就生成了逻辑上的DAG.        RDD之间的关系可以从两个维度来理解:一个是RDD是从哪些RDD转换而来,也就是RDD的parent RDD(s)是什么:还有就是依赖于parent RDD(s)的哪些Partition(s).这个关系,就是RDD之间的依赖,org.apache.…
一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 1.2 RDD的属性 (1)一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片…
一.Spark-Shell交互式工具 1.Spark-Shell交互式工具 Spark-Shell提供了一种学习API的简单方式, 以及一个能够交互式分析数据的强大工具. 在Scala语言环境下或Python语言环境下均可使用. 启动Spark-Shell                ./bin/spark-shell      本地模式,线程数为1(1个CPU)                ./bin/spark-shell --master                ./bin…
RDD是分布式内存的一个抽象概念,是一种高度受限的共享内存模型,即RDD是只读的记录分区的集合,能横跨集群所有节点并行计算,是一种基于工作集的应用抽象. RDD底层存储原理:其数据分布存储于多台机器上,事实上,每个RDD的数据都以Block的形式存储于多台机器上,每个Executor会启动一个BlockManagerSlave,并管理一部分Block:而Block的元数据由Driver节点上的BlockManagerMaster保存,BlockManagerSlave生成Block后向Block…
Spark学习之路Spark之RDD 目录 一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 1.2 RDD的属性 (1)一组分片(Partition),即数…
一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 1.2 RDD的属性 (1)一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片…
打开eclipse创建maven项目 pom.xml文件 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0…
目录 Spark(二)算子讲解 一.wordcountcount 二.编程模型 三.RDD数据集和算子的使用 Spark(二)算子讲解 @ 一.wordcountcount 基于上次的wordcount,我们来写一个wordcountcount,来对wc程序进行第二次计数,我们来分析一下性能. package com.littlepage.wc import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkCon…
RDD的概述 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. RDD的属性 (1)一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片都会被一个计算任务处…