鸢尾花卉数据集Iris是一类多重变量分析的数据集 通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类 针对iris数据集实践决策树算法(C4.5.C5.0),并用交叉矩阵评估模型 iris数据RStudio系统自带 Gary<-iris #建立决策树模型,来预测鸢尾花的种类 #重命名变量名,将预测鸢尾花卉转换为class 通过前四个变量预测class属于哪一个类 Gary.names<-c('sepa…
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正    ===========================================…
定义: 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法. 目前我们会用到的主流的决策树算法包括:ID3,C4.5,CART等. ID3算法是以信息增益为准则选择信息增益最大的属性,信息增益对可取值数目较多的属性有所偏好,比如通过ID号可将每个样本分成一类,但是没有意义.同时ID3只能对离散属性的数据集构造决策树. c4.5算法是以信息增益率为准则选择…
决策树算法 决策树算法主要有ID3, C4.5, CART这三种. ID3算法从树的根节点开始,总是选择信息增益最大的特征,对此特征施加判断条件建立子节点,递归进行,直到信息增益很小或者没有特征时结束. 信息增益:特征 A 对于某一训练集 D 的信息增益 \(g(D, A)\) 定义为集合 D 的熵 \(H(D)\) 与特征 A 在给定条件下 D 的熵 \(H(D/A)\) 之差. 熵(Entropy)是表示随机变量不确定性的度量. \[ g(D, A) = H(D) - H(D \mid A)…
之前对决策树的算法原理做了总结,包括决策树算法原理(上)和决策树算法原理(下).今天就从实践的角度来介绍决策树算法,主要是讲解使用scikit-learn来跑决策树算法,结果的可视化以及一些参数调参的关键点. 1. scikit-learn决策树算法类库介绍 scikit-learn决策树算法类库内部实现是使用了调优过的CART树算法,既可以做分类,又可以做回归.分类决策树的类对应的是DecisionTreeClassifier,而回归决策树的类对应的是DecisionTreeRegressor…
预测是非常困难的,更别提预测未来. 4.1 回归简介 随着现代机器学习和数据科学的出现,我们依旧把从“某些值”预测“另外某个值”的思想称为回归.回归是预测一个数值型数量,比如大小.收入和温度,而分类则指预测标号或类别,比如判断邮件是否为“垃圾邮件”,拼图游戏的图案是否为“猫”. 将回归和分类联系在一起是因为两者都可以通过一个(或更多)值预测另一个(或多个)值.为了能够做出预测,两者都需要从一组输入和输出中学习预测规则.在学习的过程中,需要告诉它们问题及问题的答案.因此,它们都属于所谓的监督学习.…
原文:http://www.zgxue.com/198/1985544.html 华电北风吹 天津大学认知计算与应用重点实验室 修改日期:2015/8/15 决策树是一种特别简单的机器学习分类算法.决策树想法来源于人类的决策过程.举个最简单的例子,人类发现下雨的时候,往往会有刮东风,然后天色变暗.对应于决策树模型,预测天气模型中的刮东风和天色变暗就是我们收集的特征,是否下雨就是类别标签.构建的决策树如下图所示 决策树模型构建过程为,在特征集合中无放回的依次递归抽选特征作为决策树的节点——当前节点…
1. 算法背景介绍 分类树(决策树)是一种十分常用的分类方法.它是一种监管学习,所谓监管学习说白了很简单,就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类.这样的机器学习就被称之为监督学习.C4.5分类树就是决策树算法中最流行的一种.下面给出一个数据集作为算法例子的基础,比如有这么一个数据集,如下: 我们将以这个数据集作讨论的基础.进行分类的目的就是根据某一天的天气状态,如天气,温度,湿度,是否刮风,来…
决策树算法原理(ID3,C4.5) CART回归树 决策树的剪枝 在决策树算法原理(ID3,C4.5)中,提到C4.5的不足,比如模型是用较为复杂的熵来度量,使用了相对较为复杂的多叉树,只能处理分类不能处理回归.对这些问题,CART(Classification And Regression Tree)做了改进,可以处理分类,也可以处理回归. 1. CART分类树算法的最优特征选择方法 ID3中使用了信息增益选择特征,增益大优先选择.C4.5中,采用信息增益比选择特征,减少因特征值多导致信息增益…
决策树算法原理(CART分类树) CART回归树 决策树的剪枝 决策树可以作为分类算法,也可以作为回归算法,同时特别适合集成学习比如随机森林. 1. 决策树ID3算法的信息论基础   1970年昆兰找到了用信息论中的熵来度量决策树的决策选择过程,昆兰把这个算法叫做ID3. 熵度量了事物的不确定性,越不确定的事物,熵就越大.随机变量X的熵的表达式如下: 其中n代表X的n种不同的离散取值.而pi代表了X取值为i的概率,log为以2或者e为底的对数.举个例子,比如X有2个可能的取值,而这两个取值各为1…