浅谈BSGS(大步小步)及其扩展】的更多相关文章

用途: 一般用来求\(a^x\equiv b\,\,(mod\,p)\)的最小正整数解,其中gcd(a,p)=1 设\(u=\lceil sqrt(p)\rceil\),则式子可以转化为\(a^{iu-j}\equiv b\,\,(mod\,p)\),其中\(i\in[1,u],j\in[0,u)\) 于是\(a^{iu}\equiv a^jb\,\,(mod\,p)\),我们就可以枚举j,存到map中,再枚举i判重就行了 不过当存在不同的j使\(a^jb\,mod\,p\)相同时,我们记录较大…
用于求解形如\(a^x≡b\mod p\)的最小非负整数解\(x\). 由欧拉定理\(a^{\phi(p)}≡1\mod p\)可以知道,我们找的解如果有解则一定在\(\phi(p)\)范围内,而最大的范围就是当\(p\)为质数时,等于\(p-1\). 一种暴力方法是枚举指数验证.由于\(gcd(a,p)=1\).则\(a\)在\(\mod p\)意义下必有逆元.所以,我们考虑分解一下质数的表示形式. 知道最大范围不超过\(p\),所以我们令\(x=i*m-j\),将\(a^{-j}\)移项到左…
我的 BSGS 和各位犇犇的差不多,但是不需要求逆元 Luogu [ TJOI2007 ] 可爱的质数 原题展现 题目描述 给定一个质数 \(p\),以及一个整数 \(b\),一个整数 \(n\),现在要求你计算一个最小的非负整数 \(l\),满足 \(b^l \equiv n \pmod p\). 输入格式 仅一行,有 \(3\) 个整数,依次代表 \(p, b, n\). 输出格式 仅一行,如果有 \(l\) 满足该要求,输出最小的 \(l\),否则输出 no solution. 样例 #1…
问题 BSGS被用于求解离散对数,即同余方程: \[ A^x\equiv B\pmod{P} \] 求\(x\)的最小非负整数解. 保证\(A\perp P\)(互质). 分析 首先,我们根据费马小定理,有 \[ A^{P-1}\equiv 1\pmod{P} \] 则显然有 \[ A^{x-k(P-1)}\equiv A^x\pmod{P} \] 即 \[ A^{x\mod{P-1}}\equiv A^x\pmod{P} \] 那么显然\(x<P-1\),我们就得到了一个\(O(P)\)的算法…
最近刚学完集合框架,想把自己的一些学习笔记与想法整理一下,所以本篇博客或许会有一些内容写的不严谨或者不正确,还请大神指出.初学者对于本篇博客只建议作为参考,欢迎留言共同学习. 之前有介绍集合框架的体系概念(http://www.cnblogs.com/yjboke/p/8761195.html),本篇介绍一下集合扩展内容:Arrays工具类的常用方法.集合与数组转换方式 Arrays是用于操作数组的工具类,里面都是静态方法,现介绍一些常用的方法: asList(array):将数组转换为集合:…
最近刚学完集合框架,想把自己的一些学习笔记与想法整理一下,所以本篇博客或许会有一些内容写的不严谨或者不正确,还请大神指出.初学者对于本篇博客只建议作为参考,欢迎留言共同学习. 之前有介绍集合框架的体系概念(http://www.cnblogs.com/yjboke/p/8761195.html),本篇介绍一下集合扩展内容:集合循环输出方式及list输出方式的效率对比 遍历循环输出方式. 遍历输出方式我这边介绍四种,for循环.迭代器(Iterator).增强for循环(foreach)和List…
bsgs algorithm ax≡b(mod n) 大步小步算法,这个算法有一定的局限性,只有当gcd(a,m)=1时才可以用 原理 此处讨论n为素数的时候. ax≡b(mod n)(n为素数) 由费马小定理可知,只需要验证0,1,2...n-1是不是解即可,因为an-1 = 1mod(n) 算法过程 1.首先求出a0,a1,a2,...,am-1 模上n的值是否为b,存储在e[i]中,求出am的逆a-m 2.下面考虑am,am+1,...,a2m-1 模上n的值是否为b 此时不用一一检查,如…
lASP.NET MVC系列文章 [01]浅谈Google Chrome浏览器(理论篇) [02]浅谈Google Chrome浏览器(操作篇)(上) [03]浅谈Google Chrome浏览器(操作篇)(下) [04]浅谈ASP.NET框架 [05]浅谈ASP.NET MVC运行过程 [06]浅谈ASP.NET MVC 控制器 [07]浅谈ASP.NET MVC 路由 [08]浅谈ASP.NET MVC 视图 [09]浅谈ASP.NET MVC 视图与控制器传递数据 [10]浅谈jqGrid…
大步小步走算法处理这样的问题: A^x = B (mod C) 求满足条件的最小的x(可能无解) 其中,A/B/C都可以是很大的数(long long以内) 先分类考虑一下: 当(A,C)==1 即A.C互质的时候, 叫他BSGS: A一定存在mod C意义下的逆元,所以,A^k也存在. 注意到,A^(fai(c)) = 1 (mod c)  ......................(fai(c)表示c的欧拉函数值) 所以,A^(fai(c)+1) = A (mod C) 就重新回去了. 所…
大步小步算法用于解决:已知A, B, C,求X使得 A^x = B (mod C) 成立. 我们令x = im - j | m = ceil(sqrt(C)), i = [1, m], j = [0, m] 那么原式就变成了: A^(im) = A^j * B 我们先枚举j,把A^j * B加入哈希表 然后枚举i,在表中查照A^(i*m),如果找到了,那么就找到了一个解. 算法的复杂度为O(n^0.5) 代码: #include <bits/stdc++.h> #define ll long…