【洛谷P4173】残缺的字符串】的更多相关文章

题目链接:P4173 残缺的字符串 题意 给定长度为 \(m\) 的模式串和长度为 \(n\) 的目标串,两个串都带有通配符,求所有匹配的位置. 思路 FFT 带有通配符的字符串匹配问题. 设模式串为 \(p\),目标串为 \(t\),将两个串的内容都根据字母先后顺序映射到 \(1\) 到 \(26\). 如果不带有通配符,那么 \(t\) 以第 \(k\) 位结束的长度为 \(|p|\) 的子串与 \(p\) 匹配时有 \[\sum_{i=0}^{|p|-1} (p[i] - t[k - |p…
传送门 话说为什么字符串会和卷积扯上关系呢……到底得脑洞大到什么程度才能想到这种东西啊……大佬太珂怕了…… 因为通配符的关系,自动机已经废了 那么换种方式考虑,如果两个字符串每一位对应的编码都相等,那么这两个字符串相等 编码相等就代表$\sum_{i=1}^na[i]-b[i]=0$ 然而这是不对的,有可能前面少一点,后面多一点,最好加起来还是$0$ 那就平方一下$\sum_{i=1}^n(a[i]-b[i]=0)^2=0$,那就大丈夫了 于是我们得到了比一位一位匹配更麻烦的方法 看到平方……把…
题目大意: 两个带通配符的字符串\(a,b\),求\(a\)在\(b\)中出现的位置 字符串长度\(\le 300000\) 考虑魔改一发\(kmp\),发现魔改不出来 于是考虑上网搜题解 然后考虑\(ntt\),发现两个串匹配需要满足\(\sum\limits_{i=0}^{n-1}(a_i-b_i)=0\) 发现不太对,可能有正有负相消等于\(0\),我们加上平方\(\sum\limits_{i=0}^{n-1}(a_i-b_i)^2=0\) 再考虑通配符,我们可以设通配符的价值为\(0\)…
(不知道xjb KMP可不可以做的说) (假设下标都以0开头) 对于有一定偏移量的序列的 对应位置 匹配或者数值计算的题,这里是有一种套路的,就是把其中一个序列翻转过来,然后卷积一下,所得到的新序列C的每一个位置就包含了 所有原来一定偏移量的位置的乘积和. 对于这个题,我们只需要找到一种方法,使相同的字符代表的数乘积是一个特殊的值,然后*可以看成0(*可以匹配任意字符),这样使得卷积后的位置是特殊值的就可以匹配. 而且这种特殊值需要满足: 两个特殊值相加之后还是特殊值,两个不是特殊值相加还不是特…
P4173 残缺的字符串 FFT在字符串匹配中的应用. 能解决大概这种问题: 给定长度为\(m\)的A串,长度为\(n\)的B串.问A串在B串中的匹配数 我们设一个函数(下标从\(0\)开始) \(C(x,y) =A(x)- B(y)\),若为0,表示B串中以第\(y\)个字符结尾的字符可以与A串中以\(x\)节为结尾的字符可以匹配 \(P(x) = \sum_{i = 0}^{m - 1}C(i,x - m + i + 1)\) 但是很遗憾当\(P(x)\),等于零时,只能够说明上述子串的字符…
P4173 残缺的字符串(FFT字符串匹配) P4173 解题思路: 经典套路将模式串翻转,将*设为0,设以目标串的x位置匹配结束的匹配函数为\(P(x)=\sum^{m-1}_{i=0}[A(m-1-i)-B(x-(m-1-i))]^2A(m-1-i)B(x-(m-1-i))]\),展开之后化简为\(P(x)=\sum_{i+j=x}A^3(i)B(j)-2\sum_{i+j=x}A^2(i)B^2(j)+\sum_{i+j=x}A(i)B^3(j)\) 做三次FFT即可,然后交题就出了一堆玄…
BZOJ原题链接 洛谷原题链接 可以将\(1\)和\(0\)的个数和看成是\(x\)轴坐标,个数差看成\(y\)轴坐标. 向右上角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(+1\),表示这一位为\(1\). 向右下角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(-1\),表示这一位为\(1\). 若不考虑题目中的限制,那么这就相当于从\((0, 0)\)出发,走\(n + m\)步到达\((n + m, n - m)\). 相当于从\(n + m\)步中选出\(n\)步向…
卡特兰数 参考博客 介绍 卡特兰数为组合数学中的一种特殊数列,用于解决一类特殊问题 设\(f(n)\)为卡特兰数的第n项 其通项公式为 \[f(n)=\frac{2n\choose n}{n+1} \] 关于它的证明 当然也有递推式 \[f(n)=\sum\limits_{i=0}^{n-1}f(i)\ast f(n-i-1) \] 最常用的则是对于通项的变形式 \[f(n)={2n\choose n}-{2n\choose n-1} \] 在此给出一较易的证明 例题 我们来看一道例题洛谷 p1…
洛谷 这题一看就是卡塔兰数. 因为\(cnt[1] \leq cnt[0]\),很显然的卡塔兰嘛! 平时我们推导卡塔兰是用一个边长为n的正方形推的, 相当于从(0,0)点走到(n,n)点,向上走的步数不能超过向右走,求出的方案数就是卡塔兰数. 即总方案\(-\)不合法方案 -> \(\frac{C_{2n}^{n}}{n+1}\). 这题只是改成了从(0,0)走到(n,m)点,那么就是:\(C^{m+n}_{n}-C^{m-1}_{m+n}\). 因为涉及到除法取模,所以要求逆元. 刚刚好201…
题目描述 输入两个01串,输出它们的最长公共子序列的长度 输入输出格式 输入格式: 一行,两个01串 输出格式: 最长公共子序列的长度 输入输出样例 输入样例#1: 复制 01010101010 00000011111 输出样例#1: 复制 6 说明 01串长度≤10000 数据好水啊 一开始想了一个dp[i]表示以b中到达i位置最长的LCS,f[i]表示他的位置,然后转移就好,不过这样只能处理LCS是从1开始的情况 比如 01110 101100这个数据就过不去了, 然而.. 我得了90...…