模型验证方法——R语言】的更多相关文章

在数据分析中经常会对不同的模型做判断 一.混淆矩阵法 作用:一种比较简单的模型验证方法,可算出不同模型的预测精度 将模型的预测值与实际值组合成一个矩阵,正例一般是我们要预测的目标.真正例就是预测为正例且实际也是正例(预测正确):假反例是实际是正例但模型错误预测成反例(即预测错误):假正例是预测是模型预测是正例,但实际是反例:真反例是预测是反例,实际也是反例. 查准率=真正例/假正例+真正例(真正率占我们预测是正例的比例) 查全率=真正例/真正例+假反例(真正率占我们实际是正例的比例) 混淆矩阵运…
R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就…
[R笔记]R语言函数总结   R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(…
原博: R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间…
R语言中文社区历史文章整理(类型篇)   R包: R语言交互式绘制杭州市地图:leafletCN包简介 clickpaste包介绍 igraph包快速上手 jiebaR,从入门到喜欢 Catterplots包,让你绘制不一样的图 今天再来谈谈REmap包 ggplot2你需要知道的都在这... R访问数据库管理系统(通过RODBC包和RMySQL包两种方式) NLP——自然语言处理(三)text2vec包 Rattle:数据挖掘的界面化操作 借助caret包实现特征选择的工作 R语言的高质量图形…
在院子里发现 http://www.cnblogs.com/yangecnu/p/3759784.html 模型验证方法 1. 一般方法 繁琐, 无数的if else, 在炎炎夏天,我见过一个验证方法3000行代码的,还要改需求,想必您能了解作为coder当时的心情. 2. 使用第三方框架,功能过于繁琐,还得自己学习,没必要 3. Code Contract 不熟悉,貌似和第三方不同的是:MS提供的,先得高大上一点而已,本质一样 下面的方法,既简单,维护也很方便.代码涉及点: 1) 模型文件代码…
数据对象 创建向量相关的方法 R语言的向量用法非常像python, 就比如这个seq(0,10,2), 从0到10, 步长为2, 涉及到的元素作为向量里的内容进行创建. 这里的用法非常像Matlab, 可以直接对向量进行科学计算. (我记得在python里类似这样的乘法是"重复"的作用, 也就是(1,2,3)会变成(1,2,3,1,2,3,1,2,3)) rep方法, 例子如下, 创建一个向量, 连续5个100, 然后是连续2个200, 然后是连续3个300 runif方法会取n个随机…
Gin除了模型绑定还提供了模型验证功能.你可以给字段指定特定的规则标签,如果一个字段用binding:"required"标签修饰,在绑定时该字段的值为空,那么将返回一个错误.开发web api的时候大部分参数都是需要验证的,比如email参数要验证是否是邮箱格式.phone参数要验证是否是手机号格式等等,使用模型验证方法可以将验证过程隔离在业务之外. 内置的验证标签 Gin通过集成go-playground/validator提供模型验证功能,并提供了很多常用验证规则可以满足我们大部…
模型验证 model validation 就是在选择 模型 和 超参数 之后.通过对训练数据进行学习.对比模型对 已知 数据的预测值和实际值 的差异. 错误的模型验证方法. 用同一套数据训练 和 评估 模型. 准确率总是100% . 模型验证正确方法: 留出集. 从训练模型的数据中留出一部分.用这部分数据来验证模型的性能. 使用train_test_split 工具. 交叉检验 用留出集进行模型验证有一个缺点,就是模型失去了一部分训练机会.有一半数据都没有为模型训练做出贡献. 每个子集既是训练…
编程教材 <R语言实战·第2版>Robert I. Kabacoff 课程教材<商务与经济统计·原书第13版> (安德森) P48.案例2-1 Pelican 商店 PS C:\Users\小能喵喵喵\Desktop\R\homework\1_Pelican> tree /f C:. │ pelican.r │ ├───.vscode │ launch.json │ └───data PelicanStores.csv 加载数据 编程教材p32 2.3.2 已知数据集为csv…