洛谷P1072 [NOIP2009] Hankson 的趣味题】的更多相关文章

P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数.现在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数 a0,a1,b0,b1,设某未知正整数 x 满足:…
题目大意:给定四个数字 a,b,c,d,求满足 \(gcd(a,x)=b,lcm(c,x)=d\) 的 x 的个数. 题解: 解法1:根据 lcm 的性质,x 一定为 d 的约数.因此,直接枚举 d 的约数,并判断是否满足上述条件即可,时间复杂度较高. 解法2:解法一中直接枚举约数会导致有大量不满足条件的数字被枚举,导致复杂度的升高.仔细观察最大公约数和最小公倍数的性质可知,在算术基本定理中体现为质因子幂之间的联系.同时,x 的个数也可以转化成有多少种质因子分解使得上述条件成立.因此,在这里直接…
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数.现在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数 a0,a1,b0,b1,设某未知正整数 x 满足: 1. x 和 a0 的最大公约数是 a…
题目描述 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数a0,a1,b0,b1,设某未知正整数x 满足:1. x 和a0 的最大公约数是a…
题目链接 Solution 此题,用到的结论都是比较浅显的,但是,我竟然没想到反过来枚举... 只有50分... 被自己蠢哭... 结论比较浅显: 1.对于两个正整数\(a\),\(b\),设 \(gcd(a,b)=k\),则存在\(gcd(a/k,b/k)=1\). 也就是说 \(x=k_1*a_1\),\(a_0=k_2*a_1\),它们最大公约数为\(a_1\),那么要求 \(k_1\) 与 \(k_2\) 必须互质,否则它们的最大公约数会是 \(gcd(k_1,k_2)*a_1\). 2…
类型:数论 传送门:>Here< 题意:给出四个数$a_0,a_1,b_0,b_1$,求满足$gcd(x,a_0)=a_1,lcm(x,b_0)=b_1$的$x$的个数 解题思路 显然$a_1 | x, x|b_1$,因此设$x = a_1 * p, \ b_1 = x*q$.则$b_1 = a_1*p*q$ 设$p*q=b_1/a_1=s$ $∵gcd(x,a_0)=a_1 \ ∴gcd(x/a_1,a_0/a_1)=1$ $∵lcm(x,b_0)=b_1 \ ∴gcd(b_1/x,b_1/…
一个JSB做法 由$\frac{x*b0}{gcd(x,b0)}=b1$,可得$\frac{x}{gcd(x,b0)}=\frac{b1}{b0}$ 设$b2=\frac{b1}{b0}$ 所以对$b2$和$b0$分解质因数,可以得到结论: 1.x必须包含b2中所有的质因数,且个数等于它在b2和b0(如果b0中有的话)中的数量和 2.对于b0中有但b2中没有的质因数,x中它的个数可以是[0,b0中的个数] 然后关于a0和a1,也有结论: 1.x中必须包含a1中的所有质因数 2.x中不能包含a0中…
洛谷 P1072 Hankson 的趣味题 洛谷传送门 JDOJ 1648: [NOIP2009]Hankson的趣味题 T2 JDOJ传送门 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个"求公约数"…
P1072 \(Hankson\)的趣味题 题目大意:已知有\(n\)组\(a0,a1,b0,b1\),求满足\((x,a0)=a1\),\([x,b0]=b1\)的\(x\)的个数. 数据范围:\(1<=n<=2,000,a0,a1,b0,a1<=2*1e9\) 用不是特别快的方法水过去的. 暴力枚举\(b1\)的约数,代入检验. 普通枚举约数复杂度\(O(\sqrt(L))\),检验的复杂度\(O(logL)\). 考虑到约数一个数\(k\)约数个数期望是\(log\)的. 所以先筛…
P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数.现在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数 a0,a1,b0,b1,设某未知正整数 x 满足:…