数据范围太大不能直接高斯消元, tarjan缩点然后按拓扑逆序对每个强连通分量高斯消元就可以了. E(u) = 1 + Σ E(v) / degree(u) 对拍时发现网上2个程序的INF判断和我不一样(他们2个的INF判断也不一样).....然而都A掉了....我觉得应该是他们写错了,我的做法应该没错的(正反2遍dfs,GDOI2015day1t1大冒险)(求打脸 -----------------------------------------------------------------…
2707: [SDOI2012]走迷宫 题意:求s走到t期望步数,\(n \le 10^4\),保证\(|SCC| \le 100\) 求scc缩点,每个scc高斯消元,scc之间直接DP 注意每次清空系数矩阵 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; typ…
[BZOJ2707][SDOI2012]走迷宫 Description Morenan被困在了一个迷宫里.迷宫可以视为N个点M条边的有向图,其中Morenan处于起点S,迷宫的终点设为T.可惜的是,Morenan非常的脑小,他只会从一个点出发随机沿着一条从该点出发的有向边,到达另一个点.这样,Morenan走的步数可能很长,也可能是无限,更可能到不了终点.若到不了终点,则步数视为无穷大.但你必须想方设法求出Morenan所走步数的期望值. Input 第1行4个整数,N,M,S,T 第[2, M…
走迷宫 Morenan被困在了一个迷宫里.迷宫可以视为N个点M条边的有向图,其中Morenan处于起点S,迷宫的终点设为T.可惜的是,Morenan非常的脑小,他只会从一个点出发随机沿着一条从该点出发的有向边,到达另一个点.这样,Morenan走的步数可能很长,也可能是无限,更可能到不了终点.若到不了终点,则步数视为无穷大.但你必须想方设法求出Morenan所走步数的期望值. N<=10000,M<=1000000,保证强连通分量的大小不超过100 Clove_unique的题解 首先考虑图是…
╰( ̄▽ ̄)╭ Morenan 被困在了一个迷宫里. 迷宫可以视为 N 个点 M 条边的有向图,其中 Morena n处于起点 S , 迷宫的终点设为 T . 可惜的是 , Morenan 非常的脑小 , 他只会从一个点出发随机沿着一条从该点出发的有向边 , 到达另一个点 . 这样 , Morenan 走的步数可能很长 , 也可能是无限,更可能到不了终点. 若到不了终点,则步数视为无穷大. 但你必须想方设法求出 Morenan 所走步数的期望值. (⊙ ▽ ⊙) 一开始看着道题,就觉得是tarj…
Description Morenan被困在了一个迷宫里.迷宫可以视为N个点M条边的有向图,其中Morenan处于起点S,迷宫的终点设为T.可惜的是,Morenan非常的脑小,他只会从一个点出发随机沿着一条从该点出发的有向边,到达另一个点.这样,Morenan走的步数可能很长,也可能是无限,更可能到不了终点.若到不了终点,则步数视为无穷大.但你必须想方设法求出Morenan所走步数的期望值. Input 第1行4个整数,N,M,S,T 第[2, M+1]行每行两个整数o1, o2,表示有一条从o…
题目 Morenan被困在了一个迷宫里.迷宫可以视为N个点M条边的有向图,其中Morenan处于起点S,迷宫的终点设为T.可惜的是,Morenan非常的脑小,他只会从一个点出发随机沿着一条从该点出发的有向边,到达另一个点.这样,Morenan走的步数可能很长,也可能是无限,更可能到不了终点.若到不了终点,则步数视为无穷大.但你必须想方设法求出Morenan所走步数的期望值. 输入格式 第1行4个整数,N,M,S,T 第[2, M+1]行每行两个整数o1, o2,表示有一条从o1到o2的边. 输出…
题面 Morenan被困在了一个迷宫里.迷宫可以视为N个点M条边的有向图,其中Morenan处于起点S,迷宫的终点设为T.可惜的是,Morenan非常的脑小,他只会从一个点出发随机沿着一条从该点出发的有向边,到达另一个点.这样,Morenan走的步数可能很长,也可能是无限,更可能到不了终点.若到不了终点,则步数视为无穷大.但你必须想方设法求出Morenan所走步数的期望值. N<=10000,M<=1000000,保证强连通分量的大小不超过 200. 题解 做法没什么好细说的, 就是缩点,然后…
题意:给你一个有向图,点数10000,边数1000000,SCC大小不超过100(按数据范围的写法只有第三部分数据满足这个条件,不过第二部分数据并没有出现大小大于100个点的SCC,我是用数组大小为100的代码以身试法的2333)从s出发随机走,问走到t的期望步数. 首先考虑inf的情况.如果从s出发可以走到一个无法走到t的点,比如这个数据:红色点为起点,绿色点为终点,那么有1/2的概率永远也走不到(在蓝色点停下). 注意出现环的情况不一定是INF,因为在环上走无穷步的概率可能是无穷小.于是先缩…
题目链接 一个点到达终点的期望步数 \(E_i=\sum_{(i,j)\in G}\frac{E_j+1}{out[i]}\),\(out[i]\)为点\(i\)的出度. 那么对于一个DAG可以直接在反向图上拓扑+DP求解. 于是对于环内高斯消元,缩点后拓扑+DP. 无解(无限步)的情况: 起点到不了终点:起点能够走到一个环,且在这个环内无法走到终点(走不出去). ps:1.T连出的边不能计算. 2.期望的计算式有个+1! 3.建反向边! 4.重边 注: 如果\(E_i\)表示从起点到点\(i\…