772002画马尾 题目连接: http://acm.uestc.edu.cn/#/problem/show/1280 Description 众所周知772002很喜欢马尾,所以他决定画几幅马尾送给他的女朋友. 772002会画m种马尾,772002还有n张纸,n张纸分别编号1到n,每张纸上只能画一种马尾. 然而772002的女朋友只喜欢其中t种马尾.并且772002的女朋友只喜欢偶数(因为这象征着成对成双). 772002想知道有多少种画法,使得n张纸画满并且自己女朋友喜欢的那t种马尾每种个…
"问题:众所周知772002很喜欢马尾,所以他决定画几幅马尾送给他的女朋友. 772002会画m种马尾,772002还有n张纸,n张纸分别编号1到n,每张纸上只能画一种马尾. 然而772002的女朋友只喜欢其中t种马尾.并且772002的女朋友只喜欢偶数(因为这象征着成对成双). 772002想知道有多少种画法,使得n张纸画满并且自己女朋友喜欢的那t种马尾每种个数都恰好为偶数. 然而772002陪女朋友看电影去了,所以他把这个问题交给了你,你能解决吗? m≤10,t≤m,n≤1000000000…
In the country there are exactly n cities numbered with positive integers from 1 to n. In each city there is an airport is located. Also, there is the only one airline, which makes m flights. Unfortunately, to use them, you need to be a regular custo…
题目链接 题意 : 有种不同的字符,每种字符有无限个,要求用这k种字符构造两个长度为n的字符串a和b,使得a串和b串的最长公共部分长度恰为m,问方案数 分析 : 直觉是DP 不过当时看到 n 很大.但是 m 很小的时候 发现此题DP并不合适.于是想可能是某种组合数学的问题可以直接公式算 看到题解的我.恍然大悟.对于这种数据.可以考虑一下矩阵快速幂优化的DP 首先要想到线性递推的 DP 式子 最直观的想法就是 dp[i][j] = 到第 i 个位置为止.前面最长匹配长度为 j 的方案数 但是如果仔…
题目链接:公式题 (2) 比赛链接:华东交通大学2018年ACM"双基"程序设计竞赛 题目描述 令f(n)=2f(n-1)+3f(n-2)+n,f(1)=1,f(2)=2 令g(n)=g(n-1)+f(n)+n*n,g(1)=2 告诉你n,输出g(n)的结果,结果对1e9+7取模 输入描述: 多组输入,每行一个整数n(1<=n<=1e9),如果输入为0,停止程序. 输出描述: 在一行中输出对应g(n)的值,结果对1e9+7取模. 示例1 输入 1 5 9 456 0 输出…
题面: 传送门 思路: 一眼看上去是三个递推......好像还挺麻烦的 仔细观察一下,发现也就是一个线性递推,但是其中后面的常数项比较麻烦 观察一下,这里面有以下三个递推是比较麻烦的 第一个是$k^2$到$\left(k+1\right)^2$,这一步可以把$\left(k+1\right)^2$展开,变成$k^2+2k+1$ 第二.三个是$w$和$z$的递推,这个就直接在转移矩阵里面乘以一个自己就好了 所以我们可以构建这样的状态矩阵: $\begin{bmatrix}a\lbrack i\rb…
题面(权限题) 题解 一道概率\(dp\),可以设\(f[i][j]\)表示第\(i\)次操作后,标号为\(j\)的小球的期望个数,那么有: \[ \begin{aligned} &f[i][j]=(1-\frac 1m)f[i-1][j]+\frac1mf[i-1][j-1](1\leq j\leq n) \\ &f[i][0]=(1-\frac 1m)f[i-1][j]+\frac1mf[i-1][n] \end{aligned} \] 这样的话转移可以写成矩阵的形式(假设有\(4\)…
目录 题目链接 思路 代码 题目链接 传送门 思路 十进制矩阵快速幂. 代码 #include <set> #include <map> #include <deque> #include <queue> #include <stack> #include <cmath> #include <ctime> #include <bitset> #include <cstdio> #include &l…
每进行一次, 编号为x的数对x, 和(x+1)%N都有贡献 用矩阵快速幂, O(N3logK). 注意到是循环矩阵, 可以把矩阵乘法的复杂度降到O(N2). 所以总复杂度就是O(N2logK) ---------------------------------------------------------------------- #include<bits/stdc++.h>   using namespace std;   const int maxn = 1009;   int N,…
题目链接 \(998244353\)写成\(99824435\)然后调这个线段树模板1.5h= = 以后要注意常量啊啊啊 \(Description\) 每个位置有一个\(3\times3\)的矩阵,要求支持区间赋值和求区间乘积. 输出答案对\(998244353\)取模后的结果. \(n,q\leq10^5\). \(Solution\) 裸的线段树+矩阵快速幂是\(O(3^3q\log^2n)\)的,因为维护区间乘的话,区间赋值为矩阵\(A\)的时候要赋值\(A^{r-l+1}\),带一个快…