首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
【51nod-1183】编辑距离
】的更多相关文章
51nod 1183 编辑距离(dp)
题目链接:51nod 1183 编辑距离 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; char a[N], b[N]; int dp[N][N];//dp[i][j]:a串的前i个字符转化成b串的前j个字符的最少操作数 int main(){ int i, j; scanf(, b+); ); ); ; i <= alen; ++i) dp[i][] =…
51nod 1183 - 编辑距离 - [简单DP][编辑距离问题][Levenshtein距离问题]
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如将kitten一字转成sitting: sitten (k->s) sittin (e->i) sitting (->g) 所以k…
51nod 1183 编辑距离【线性dp+类似最长公共子序列】
1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如将kitten一字转成sitting: sitten (k->s) sittin (e->i) sitting (->g) 所以kitten和sitting的编辑…
51nod 1183 编辑距离
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183. 题意不再赘述. 分析:大概和LCS差不多的吧 但是我用LCS转换貌似错了 搜的网上的题解 大概就是 如果(dp[i-1][j-1] dp[i-1][j] dp[i][j-1])转移过来 注意到 如果s[i] == p[j]的情况可以不用+1 #include<bits/stdc++.h> using namespace std; ],p[]; ][]…
(DP)51NOD 1183 编辑距离
编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如将kitten一字转成sitting: sitten (k->s) sittin (e->i) sitting (->g) 所以kitten和sitting的编辑距离是3.俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念. 给出两个字符串a,b,求…
51Nod 1183 编辑距离 (字符串相似算法)
编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如将kitten一字转成sitting: sitten (k->s) sittin (e->i) sitting (->g) 所以kitten和sitting的编辑距离是3.俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念. 给出两个字符串a,b,求…
51NOD 1183编辑距离(动态规划)
>>点击进入原题测试<< 思路:这个题放在基础题,分值还是零分,好歹也给人家动态规划一点面子啊!刚开始写的想法是找到其最大公共字串,然后用两个字符串中最长字符串的长度减掉最大公共字符串的长度,这个思路应该也是对的,几天前写的,好像没用动态规划写然后错了:然后百度了下是用动态规划,然后重新写了下.换了个思路,然后手写了下样例的dp数组,寻找状态之间的关系. 以下AC代码: #include<string> #include<iostream> using na…
动态规划 51nod 1183
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183 1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如将kitten一字转成s…
51 Nod 1183 编辑距离 (动态规划基础)
原题链接:1183 编辑距离 题目分析:这个最少的操作次数,通常被称之为编辑距离."编辑距离"一次本身具有最短的意思在里面.因为题目有"最短"这样的关键词,首先我们想到的是 .是的,当 的距离为 的距离为 的时候,我们可以找到这样的操作次数的界限: 把 中字符全删了,再添加 的全部字符,操作次数 . 把 中字符删或加成 个,再修改操作次数最多 . 虽然,我们找到了这样的上界, 从实际角度并不可行,因为搜索空间是指数的,这取决于 中的字符种类--具体的…
基础dp 记录
51nod 1134 最长递增子序列 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #define rep(i,l,r) for (int i=l; i<=r; i++) typedef long long ll; using namespace std; ; int n, s[N]; int dp[N]; int main(){ freopen(&q…