%matplotlib inline from mxnet import nd import numpy as np from mxnet import autograd,gluon,init,nd from mxnet.gluon import nn,data as gdata,loss as gloss import time def get_data(): data = np.genfromtxt('./data/airfoil_self_noise.dat', delimiter='\t…
Seq2Seq(Attention) @ 目录 Seq2Seq(Attention) 1.理论 1.1 机器翻译 1.1.1 模型输出结果处理 1.1.2 BLEU得分 1.2 注意力模型 1.2.1 Attention模型 1.2.2 Seq2Seq(Attention)模型结构 1.2.2.1 Encoder 1.2.2.2 Decoder 1.2.2.2.1 原始解码器 1.2.2.2.2 带有注意力机制的解码器 1.3 特殊字符 2.实验 2.1 实验步骤 2.2 算法模型 2.2.1…
Bi-LSTM(Attention) @ 目录 Bi-LSTM(Attention) 1.理论 1.1 文本分类和预测(翻译) 1.2 注意力模型 1.2.1 Attention模型 1.2.2 Bi-LSTM(Attention)模型结构 2.实验 2.1 实验步骤 2.2 算法模型 1.理论 1.1 文本分类和预测(翻译) 文本分类的输入处理和预测(翻译)不同: 预测(翻译)通常用eye()把每个输入向量转换为one-hot向量, 但文本分类模型通常用Embedding初始化一个嵌入矩阵用来…
Seq2Seq(Attention) 目录 Seq2Seq(Attention) 1.理论 1.1 机器翻译 1.1.1 模型输出结果处理 1.1.2 BLEU得分 1.2 注意力模型 1.2.1 Attention模型 1.2.2 Seq2Seq(Attention)模型结构 1.2.2.1 Encoder 1.2.2.2 Decoder 1.2.2.2.1 原始解码器 1.2.2.2.2 带有注意力机制的解码器 1.3 特殊字符 2.实验 2.1 实验步骤 2.2 算法模型 2.2.1 En…
Seq2Seq 目录 Seq2Seq 1.理论 1.1 基本概念 1.2 模型结构 1.2.1 Encoder 1.2.2 Decoder 1.3 特殊字符 2.实验 2.1 实验步骤 2.2 算法模型 1.理论 1.1 基本概念 在RNN模型需要解决的问题中,有一类M to N的问题,即输入输出不等长问题,例如机器翻译和生成概述.这种结构又叫做Seq2Seq模型,或者叫Encoder-Decoder模型. 1.2 模型结构 1.2.1 Encoder Encoder可以直接用一个RNN网络,它…
Bi-LSTM @ 目录 Bi-LSTM 1.理论 1.1 基本模型 1.2 Bi-LSTM的特点 2.实验 2.1 实验步骤 2.2 实验模型 1.理论 1.1 基本模型 Bi-LSTM模型分为2个独立的LSTM,输入序列分别以正序和逆序输入至2个LSTM模型进行特征提取,将2个输出向量进行拼接后形成的词向量作为该词的最终特征表达(因此底层维度是普通LSTM隐藏层维度的两倍) 1.2 Bi-LSTM的特点 Bi-LSTM的模型设计理念是使t时刻所获得特征数据同时拥有过去和将来之间的信息 实验证…
LSTM 目录 LSTM 1.理论 1.1 LSTM与RNN 1.1.1 RNN的缺点 1.1.2 LSTM 1.2 LSTM基本结构 2.实验 2.1 实验步骤 2.2 算法模型 1.理论 1.1 LSTM与RNN 1.1.1 RNN的缺点 如果训练非常深的神经网络,对这个网络做从左到右的前向传播和而从右到左的后向传播,会发现输出\(y^{<t>}\)很难传播回去,很难影响前面的权重,这样的梯度消失问题使得RNN常常出现局部效应,不擅长处理长期依赖的问题 和梯度爆炸不同的是,梯度爆炸会使得参…
TextRNN @ 目录 TextRNN 1.基本概念 1.1 RNN和CNN的区别 1.2 RNN的几种结构 1.3 多对多的RNN 1.4 RNN的多对多结构 1.5 RNN的多对一结构 1.6 RNN的缺点 2.实验 2.1 实验步骤 2.2 算法模型 1.基本概念 1.1 RNN和CNN的区别 并非刚性地记忆所有固定⻓度的序列,⽽是通过隐藏状态来存储之前时间步的信息 1.2 RNN的几种结构 一对一,一对多,多对一,多对多(长度相等/不等) 多个输入时,由a和x生成y和下一个a, 这一过…
TextCNN @ 目录 TextCNN 1.理论 1.1 基础概念 最大汇聚(池化)层: 1.2 textCNN模型结构 2.实验 2.1 实验步骤 2.2 算法模型 1.理论 1.1 基础概念 在文本处理中使用卷积神经网络:将文本序列当作一维图像 一维卷积 -> 基于互相关运算的二维卷积的特例: 多通道的一维卷积: 最大汇聚(池化)层: 1.2 textCNN模型结构 textCNN模型设计如下所示: 定义多个一维卷积核,并分别对输入执行卷积运算.具有不同宽度的卷积核可以捕获不同数目的相邻词…
在github里看到了个不错的脚本游戏,决定亲自动手来写,效果如下 下面是代码的思路分享 把整个代码理解消化确实不容易,但是如果你坚持看完相信你一定会有收获 如果没兴趣可以直接点击下面的链接 复制代码 开玩: http://www.cnblogs.com/demonxian3/p/6241755.html 1丶首先准备好素材 游戏的元素有:飞机 敌机 子弹 背景 暂停 素材的大小可以通过drawImage()来改变其大小,因此不需要太纠结素材多少像素 创建一个html文件 和一个js文件 然后开…