首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
循环神经网络LSTM RNN回归:sin曲线预测
】的更多相关文章
循环神经网络LSTM RNN回归:sin曲线预测
摘要:本篇文章将分享循环神经网络LSTM RNN如何实现回归预测. 本文分享自华为云社区<[Python人工智能] 十四.循环神经网络LSTM RNN回归案例之sin曲线预测 丨[百变AI秀]>,作者:eastmount. 一.RNN和LSTM回顾 1.RNN (1) RNN原理 循环神经网络英文是Recurrent Neural Networks,简称RNN.假设有一组数据data0.data1.data2.data3,使用同一个神经网络预测它们,得到对应的结果.如果数据之间是有关系的,比如…
大话循环神经网络(RNN)
在上一篇文章中,介绍了 卷积神经网络(CNN)的算法原理,CNN在图像识别中有着强大.广泛的应用,但有一些场景用CNN却无法得到有效地解决,例如: 语音识别,要按顺序处理每一帧的声音信息,有些结果需要根据上下文进行识别: 自然语言处理,要依次读取各个单词,识别某段文字的语义 这些场景都有一个特点,就是都与时间序列有关,且输入的序列数据长度是不固定的. 而经典的人工神经网络.深度神经网络(DNN),甚至卷积神经网络(CNN),一是输入的数据维度相同,另外是各个输入之间是独立的,每层神经元的信号…
十 | 门控循环神经网络LSTM与GRU(附python演练)
欢迎大家关注我们的网站和系列教程:http://panchuang.net/ ,学习更多的机器学习.深度学习的知识! 目录: 门控循环神经网络简介 长短期记忆网络(LSTM) 门控制循环单元(GRU) TensorFlow实现LSTM和GRU 参考文献 一.门控循环神经网络 门控循环神经网络在简单循环神经网络的基础上对网络的结构做了调整,加入了门控机制,用来控制神经网络中信息的传递.门控机制可以用来控制记忆单元中的信息有多少需要保留,有多少需要丢弃,新的状态信息又有多少需要保存到记忆单元中等.这…
深度学习项目——基于循环神经网络(RNN)的智能聊天机器人系统
基于循环神经网络(RNN)的智能聊天机器人系统 本设计研究智能聊天机器人技术,基于循环神经网络构建了一套智能聊天机器人系统,系统将由以下几个部分构成:制作问答聊天数据集.RNN神经网络搭建.seq2seq模型训练.智能聊天.经过实验,确定该系统可对本人的聊天话语进行快速并准确的回应,且回复可以模仿朋友的语气风格. 关键词: RNN神经网络: seq2seq模型: 聊天机器人:TensorFlow: 一.设计目标 1.掌握聊天机器人系统原理: 2.掌握循环神经网络(RNN)原理: 3.掌握循环神经…
Tensorflow 循环神经网络 基本 RNN 和 LSTM 网络 拟合、预测sin曲线
时序预测一直是比较重要的研究问题,在统计学中我们有各种的模型来解决时间序列问题,但是最近几年比较火的深度学习中也有能解决时序预测问题的方法,另外在深度学习领域中时序预测算法可以解决自然语言问题等. 在网上找到了 tensorflow 中 RNN 和 LSTM 算法预测 sin 曲线的代码,效果不错. LSTM: #encoding:UTF-8 import random import numpy as np import tensorflow as tf from…
Pytorch循环神经网络LSTM时间序列预测风速
#时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的. #时间序列模型最常用最强大的的工具就是递归神经网络(recurrent neural network, RNN).相比与普通神经网络的各计算结果之间相互独立的特点,RNN的每一次隐含层的计算结果都与当前输入以及上一次的隐含层结果相关.通过这种方法,RNN…
【学习笔记】循环神经网络(RNN)
前言 多方寻找视频于博客.学习笔记,依然不能完全熟悉RNN,因此决定还是回到书本(<神经网络与深度学习>第六章),一点点把啃下来,因为这一章对于整个NLP学习十分重要,我想打好基础. 当然,依然感谢这个视频对我理解RNN的帮助,链接在此: https://www.bilibili.com/video/BV1z5411f7Bm?spm_id_from=333.337.search-card.all.click 循环神经网络 循环神经网络(Recurrent Neural Network,RNN)…
深度学习之循环神经网络(RNN)
循环神经网络(Recurrent Neural Network,RNN)是一类具有短期记忆能力的神经网络,适合用于处理视频.语音.文本等与时序相关的问题.在循环神经网络中,神经元不但可以接收其他神经元的信息,还可以接收自身的信息,形成具有环路的网络结构. 循环神经网络的参数学习可以通过随时间反向传播算法来学习,即按照时间的逆序把误差一步步往前传递.而当输入序列比较长时,会产生梯度爆炸或梯度消失问题,这也叫做长期依赖问题.为了解决这个问题,门控机制被引入来改进循环神经网络,也就是长短期记忆网络(L…
循环神经网络-LSTM
LSTM(Long Short-Term Memory)是长短期记忆网络,是一种时间递归神经网络,适合于处理和预测时间序列中间隔和延迟相对较长的重要事件. LSTM能够很大程度上缓解长期依赖的问题. LSTM的形象描述 RNN是傻子式的记忆,把所有的事情都记下来,这很容易记忆混乱. LSTM不同的地方是学会了思考.总结,而且思考方式很符合人类的思维. 首先它会有一定的记忆(初始记忆)和经验. // 记忆:人在学习时会通过各种渠道获取大量资料,但是有些资料这样说,有些那样说,无法确定真假,只能都记…
循环神经网络(RNN)
1. 场景与应用 在循环神经网络可以用于文本生成.机器翻译还有看图描述等,在这些场景中很多都出现了RNN的身影. 2. RNN的作用 传统的神经网络DNN或者CNN网络他们的输入和输出都是独立的.对于这些模型输入的数据跟输出的数据大多是关联不太紧密的场景,但是有些场景输入的数据对后面输入的数据是有关系的,或者说后面的数据跟前面的数据是有关联的.例如,对于文本类的数据,当输入某句话的时候,刚开始输入第一个字的时候,再输入这句话的第二个字时候,其实第二个字要输入什么字其实是跟第一个字是有…