DAGs with NO TEARS: Continuous Optimization for Structure Learning 目录 DAGs with NO TEARS: Continuous Optimization for Structure Learning 概 主要内容 等价条件的推导 性质的推导 求解 代码 Zheng X., Aragam B., Ravikumar P. and Xing E. DAGs with NO TEARS: Continuous Optimizat…
目录 概 主要内容 代码 Yu Y., Chen J., Gao T. and Yu M. DAG-GNN: DAG structure learning with graph neural networks. In International Conference on Machine Learning (ICML), 2019. 概 有向无环图 + GNN + VAE. 主要内容 先前已经有工作(NOTEARS)讨论了如何处理线性SEM模型 \[X = A^TX + Z, \] \(A \i…
目录 概 主要内容 最终的目标 代码 Ng I., Fang Z., Zhu S., Chen Z. and Wang J. Masked Gradient-Based Causal Structure Learning. arXiv preprint arXiv:1911.10500, 2019. 概 非线性, 自动地学习因果图. 主要内容 NOTEARS将有向无环图凝练成了易处理的条件, 本文将这种思想扩展至非线性的情况: \[X_i = f_i(X_{\mathrm{pa}(i)}) +…
目录 概 主要内容 算法 finite precision arithmic 实验 Maclaurin D, Duvenaud D, Adams R P, et al. Gradient-based Hyperparameter Optimization through Reversible Learning[J]. arXiv: Machine Learning, 2015. @article{maclaurin2015gradient-based, title={Gradient-based…
论文信息 论文标题:Towards Unsupervised Deep Graph Structure Learning论文作者:Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, Shirui Pan论文来源:2022, WWW Best Paper Award candidate论文地址:download  论文代码:download 1 Introduction Deep GSL(深度图结构学习):在节点分类任务的监督下和GN…
概率图的学习真的要接近尾声了啊,了解的越多越发感受到它的强大.这周的作业本质上是data mining.从数据中学习PGM的结构和参数,完全使用数据驱动 —— No structure, No parameters. Data tell us everything 1.识别外星人 如此强大的工具要用来做一件极其逗逼的事情:在给定肢体位姿条件下,从图形中识别外星人...显而易见,地球人只有两手两脚,外星人却有4手2脚!给定的肢体位姿以三坐标的形式出现(y,x, angle),其中x,y 代表肢体的…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1610.02527v1 [cs.LG] 8 Oct 2016 坐标下降法:https://blog.csdn.net/qq_32742009/article/details/81735274 Abstract 我们为机器学习中的分布式优化引入了一个越来越相关的新设置,其中规定优化的数据在极大量的节点上分布不均匀.我们的目标是训练一个高质量的集中式模型.我们将此设置称为联邦优化.在这种情况下,通信效率至关重要,最大限度地减…
1.核心 在每个子种群的粒子被划分为普通粒子(ordinary particles)和交流粒子(communication particles),在每次迭代过程中,不同的粒子执行不同的进化操作.普通粒子用于探索能力(exploitation),交流粒子用于开发能力(exploration). 设置一个动态的逐渐增加的控制参数p,用于实现分类操作,即将粒子分为普通粒子和交流粒子,同时,使普通粒子逐渐进化为交流粒子. 2.相关描述 将初始种群(original population)划分为M*N个粒…
目录 概 主要内容 算法 选择合适的参数 一些别的优化算法 AdaMax 理论 代码 Kingma D P, Ba J. Adam: A Method for Stochastic Optimization[J]. arXiv: Learning, 2014. @article{kingma2014adam:, title={Adam: A Method for Stochastic Optimization}, author={Kingma, Diederik P and Ba, Jimmy}…
目录 概 主要内容 代码 Skorokhodov I, Burtsev M. Loss Landscape Sightseeing with Multi-Point Optimization.[J]. arXiv: Learning, 2019. @article{skorokhodov2019loss, title={Loss Landscape Sightseeing with Multi-Point Optimization.}, author={Skorokhodov, Ivan and…