BERT模型的OneFlow实现】的更多相关文章

BERT模型的OneFlow实现 模型概述 BERT(Bidirectional Encoder Representations from Transformers)是NLP领域的一种预训练模型.本案例中,基于论文BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding实现了BERT模型的OneFlow版本. 模型架构 BERT 在实际应用中往往分为两步: 首先,预训练得到 BERT 语言模型…
BERT预训练模型在诸多NLP任务中都取得最优的结果.在处理文本分类问题时,即可以直接用BERT模型作为文本分类的模型,也可以将BERT模型的最后层输出的结果作为word embedding导入到我们定制的文本分类模型中(如text-CNN等).总之现在只要你的计算资源能满足,一般问题都可以用BERT来处理,此次针对公司的一个实际项目——一个多类别(61类)的文本分类问题,其就取得了很好的结果. 我们此次的任务是一个数据分布极度不平衡的多类别文本分类(有的类别下只有几个或者十几个样本,有的类别下…
转载 https://zhuanlan.zhihu.com/p/49271699 首发于深度学习前沿笔记 写文章   从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 张俊林 你所不知道的事 179 人赞了该文章 Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得.那为什么会有这么高的评价呢?是因为它有重大的理论或者模型创新吗?其实并没有,从模型创新角度看一般,创新不算大.但是架不住效果太好了,基本刷新了很…
attention 以google神经机器翻译(NMT)为例 无attention: encoder-decoder在无attention机制时,由encoder将输入序列转化为最后一层输出state向量,再由state向量来循环输出序列每个字符. attention机制: 将整个序列的信息压缩在一维向量里造成信息丢失,并且考虑到输出的某个字符只与输入序列的某个或某几个相关,与其他输入字符不相关或相关性较弱,由此提出了attention机制.在encoder层将输入序列的每个字符output向量…
前不久,谷歌AI团队新发布的BERT模型,在NLP业内引起巨大反响,认为是NLP领域里程碑式的进步.BERT模型在机器阅读理解顶级水平测试SQuAD1.1中表现出惊人的成绩:全部两个衡量指标上全面超越人类,并且还在11种不同NLP测试中创出最佳成绩,包括将GLUE基准推至80.4%(绝对改进7.6%),MultiNLI准确度达到86.7%(绝对改进率5.6%)等.BERT模型是以Transformer编码器来表示,本文在详细介绍BERT模型,Transformer编码器的原理可以参考(https…
最近,笔者想研究BERT模型,然而发现想弄懂BERT模型,还得先了解Transformer. 本文尽量贴合Transformer的原论文,但考虑到要易于理解,所以并非逐句翻译,而是根据笔者的个人理解进行翻译,其中有一些论文没有解释清楚或者笔者未能深入理解的地方,都有放出原文,如有不当之处,请各位多多包含,并希望得到指导和纠正. 论文标题 Attention Is ALL You Need 论文地址 https://arxiv.org/pdf/1706.03762.pdf 摘要 序列转换方式由基于…
从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得.那为什么会有这么高的评价呢?是因为它有重大的理论或者模型创新吗?其实并没有,从模型创新角度看一般,创新不算大.但是架不住效果太好了,基本刷新了很多NLP的任务的最好性能,有些任务还被刷爆了,这个才是关键.另外一点是Bert具备广泛的通用性,就是说绝大部分NLP任务都可以采用类似的两阶段模式直接去提升效果,这…
一.BERT整体结构 BERT主要用了Transformer的Encoder,而没有用其Decoder,我想是因为BERT是一个预训练模型,只要学到其中语义关系即可,不需要去解码完成具体的任务.整体架构如下图: 多个Transformer Encoder一层一层地堆叠起来,就组装成了BERT了,在论文中,作者分别用12层和24层Transformer Encoder组装了两套BERT模型,两套模型的参数总数分别为110M和340M. 二.再次理解Transformer中的Attention机制…
我们下载下来的预训练的bert模型的大小大概是400M左右,但是我们自己预训练的bert模型,或者是我们在开源的bert模型上fine-tuning之后的模型的大小大约是1.1G,我们来看看到底是什么原因造成的,首先我们可以通过下一段代码来输出我们训练好的模型的参数变量. 下面这段代码可以输出我们下载的官方预训练模型的参数变量 import tensorflow as tf from tensorflow.python import pywrap_tensorflow model_reader…
BERT模型是什么 BERT的全称是Bidirectional Encoder Representation from Transformers,即双向Transformer的Encoder,因为decoder是不能获要预测的信息的.模型的主要创新点都在pre-train方法上,即用了Masked LM和Next Sentence Prediction两种方法分别捕捉词语和句子级别的representation. 1.1 模型结构 由于模型的构成元素Transformer已经解析过,就不多说了,…